O'REILLY"

in a Nutshell

A DESKTOP QUICK REFERENCE

Benjamin J. Evans & David Flanagan

www.it-ebooks.info

http://www.it-ebooks.info/

O'REILLY"

Java in a Nutshell

The latest edition of Java in a Nutshell is designed to
help experienced Java programmers get the most out
of Java 7 and 8, but it's also a learning path for new
developers. Chock full of examples that demonstrate
how to take complete advantage of modern Java APls
and development best practices, the first section of
this thoroughly updated book provides a fast-paced,
no-fluffintroduction to the Java programming language
and the core runtime aspects of the Java platform.

The second section is a reference to core concepts
and APIs that shows you how to perform real
programming work in the Java environment.

Get up to speed on language details,
including Java 8 changes

Learn object-oriented programming, using
basic Java syntax

Explore generics, enumerations,
annotations, and lambda expressions

Understand basic techniques used in
object-oriented design

Examine concurrency and memory, and
how they're intertwined

Work with Java collections and handle
common data formats

Delve into Java's latest I/O APIs, including
asynchronous channels

Use Nashorn to execute JavaScript on the
Java Virtual Machine

Become familiar with development tools in
OpenJDK

“In a world of blogged

opinions and javadoc'd
references, this latest
edition is still the
simplest and most
definitive way to cut
through to the answers

you need.”

—Kevlin Henney
consultant, author, speaker,
editor of 97 Things Every
Programmer Should Know

Benjamin J.Evans is the
cofounder and Technology

Fellow of jClarity, a startup that
delivers performance tools to help
development & ops teams. Heis a
Java Champion; JavaOne Rockstar;
coauthor of The Well-Grounded
Java Developer (Manning); and
aregular public speaker on the
Java platform, performance,
concurrency, and related topics.

David Flanagan, senior staff
frontend software engineer at
Mozilla, has written several books
for O'Reilly, including JavaScript:
The Definitive Guide, jQuery Pocket
Reference, The Ruby Programming
Language, and previous editions of
Javain a Nutshell.

PROGRAMMING/JAVA

US $59.99
ISBN:

781449

CAN $62.99 H

978-1-449-37082-4

W
Ny =]

370824

www.it-ebooks.info

Twitter: @oreillymedia

]

facebook.com/oreilly

http://www.it-ebooks.info/

JAVA

IN A NUTSHELL

Sixth Edition

Benjamin J. Evans and David Flanagan

Beijing + Cambridge - Farham - Koln « Sebastopol - Tokyo [KON{=SINAS

www.it-ebooks.info

http://www.it-ebooks.info/

Javain a Nutshell
by Benjamin J. Evans and David Flanagan

Copyright © 2015 Benjamin J. Evans and David Flanagan. All rights reserved.
Printed in the United States of America.
Published by O’'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://www.safaribooksonline.com). For more infor-
mation, contact our corporate/institutional sales department: 800-998-9938 or corpo-
rate@oreilly.com.

Editors: Mike Loukides and Indexer: Ellen Troutman Zaig
Meghan Blanchette Interior Designer: David Futato
Production Editor: Matthew Hacker Cover Designer: Ellie Volckhausen
Copyeditor: Charles Roumeliotis lllustrator: Rebecca Demarest

Proofreader: Jasmine Kwityn

February 1996: First Edition March 2002: Fourth Edition
May 1997: Second Edition March 2005: Fifth Edition
November 1999: Third Edition October 2014: Sixth Edition

Revision History for the Sixth Edition
2014-10-10: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781449370824 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trade-
marks of O’Reilly Media, Inc. Java in a Nutshell, the cover image of a Javan tiger, and related
trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly Media,
Inc., was aware of a trademark claim, the designations have been printed in caps or initial
caps.

While the publisher and the authors have used good faith efforts to ensure that the informa-
tion and instructions contained in this work are accurate, the publisher and the authors dis-
claim all responsibility for errors or omissions, including without limitation responsibility for
damages resulting from the use of or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any code samples or other technol-
ogy this work contains or describes is subject to open source licenses or the intellectual prop-
erty rights of others, it is your responsibility to ensure that your use thereof complies with
such licenses and/or rights.

978-1-449-37082-4
[LSI]

www.it-ebooks.info

http://www.safaribooksonline.com
mailto:corporate@oreilly.com
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449370824
http://www.it-ebooks.info/

This book is dedicated to all who teach peace and resist violence.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Foreword..........ovveiiiiii Xi

Preface.o Xiii

Partl. IntroducingJava

1. Introduction to the Java Environment.....................ooil 3
The Language, the JVM, and the Ecosystem 3
A Brief History of Java and the JVM 7
The Lifecycle of a Java Program 9
Java Security 11
Comparing Java to Other Languages 11
Answering Some Criticisms of Java 13

2. Java Syntax from the Ground Up................cevunnenn. 17
Java Programs from the Top Down 18
Lexical Structure 18
Primitive Data Types 22
Expressions and Operators 30
Statements 46
Methods 66
Introduction to Classes and Objects 72
Arrays 77
Reference Types 84
Packages and the Java Namespace 88
Java File Structure 93
Defining and Running Java Programs 94
Summary 95

www.it-ebooks.info

vii

http://www.it-ebooks.info/

3. Object-Oriented ProgramminginJava..............ocvvveviiinnnenn. 97

Overview of Classes 97
Fields and Methods 100
Creating and Initializing Objects 106
Subclasses and Inheritance 110
Data Hiding and Encapsulation 121
Abstract Classes and Methods 128
Modifier Summary 132
4. TheJavaTypeSystem........ovviiiiiiiiiiiiiiiiiiieiiiieeennnnes 135
Interfaces 136
Java Generics 142
Enums and Annotations 151
Nested Types 155
Lambda Expressions 171
Conclusion 174
5. Introduction to Object-Oriented DesigninJava....................... 177
Java Values 177
Important Methods of java.lang.Object 178
Aspects of Object-Oriented Design 183
Exceptions and Exception Handling 193
Safe Java Programming 195
6. Java’s Approach to Memory and Concurrency...........covvvvniennnn 197
Basic Concepts of Java Memory Management 197
How the JVM Optimizes Garbage Collection 201
The HotSpot Heap 203
Finalization 206
Java’s Support for Concurrency 208
Working with Threads 218
Summary 219

Partll. Working with the Java Platform

7. Programming and Documentation Conventions....................... 223
Naming and Capitalization Conventions 223
Practical Naming 225
Java Documentation Comments 226
Conventions for Portable Programs 235

viii | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

. Working with Java Collections.coovviiiiiiiiiiinennnnns, 239

Introduction to Collections API 239
Lambda Expressions in the Java Collections 258
Conclusion 266

. Handling Common DataFormats...............coovvviiininnnennnn 267
Text 267
Numbers and Math 275
Java 8 Date and Time 280
Conclusion 287

. FileHandlingand 1/0..............ccooiiiiiiiiiiiii i, 289
Classic Java I/O 289
Modern Java I/O 295
NIO Channels and Buffers 298
Async I/0 301
Networking 304

. (Classloading, Reflection, and Method Handles. 31
Class Files, Class Objects, and Metadata 311
Phases of Classloading 313
Secure Programming and Classloading 315
Applied Classloading 317
Reflection 320
Dynamic Proxies 325
Method Handles 326
SNashorn. ... e 331
Introduction to Nashorn 331
Executing JavaScript with Nashorn 332
Nashorn and javax.script 340
Advanced Nashorn 342
Conclusion 347

. Platform Toolsand Profiles............ccooeviiiiiiiiiiiininnnne 349
Command-Line Tools 349
VisualVM 362
Java 8 Profiles 367
Conclusion 372
] 373
Table of Contents | ix

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword

In the winter of 2013-14, the United Kingdom was battered by an extended series of
exceptionally violent winter storms. These storms uncovered shipwrecks and some
amazing archaeology, especially in my home county of Cornwall. One of the most
striking discoveries was a petrified forest, dating back to the end of the last Ice Age,
now covered by the sea and sand. Before the sea claimed it again, I was lucky
enough to visit it at very low tide and spend some hours exploring it.

Among the remaining roots and tree stumps and beds of organic matter on their
way to becoming peat, I could still make out pieces of trunk branch and bark. As I
wandered along the shore with the tide coming in, I came across a single hemi-
sphere from a nut—from a tree that no longer grows in these latitudes. Despite
being embedded in the organic layer, the shape of the nutshell and its ability to sur-
vive over long periods of time was still unmistakable.

In working on this new edition of David’s classic text, I hope to have embodied the
spirit of that prehistoric tree. If I have preserved the tenacious form and, crucially,
the feel of Java in a Nutshell, while bringing it to the attention of a new generation of
developers, with the important parts emphasized, then I shall be well satisfied.

—Ben Evans, 2014

Xi

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

This book is a desktop Java reference, designed to sit faithfully by your keyboard
while you program. Part I of the book is a fast-paced, “no-fluff” introduction to the
Java programming language and the core runtime aspects of the Java platform.
Part 11 is a reference section that blends elucidation of core concepts with examples
of important core APIs. The book covers Java 8, but we recognize that some shops
may not have adopted it yet—so where possible we call out if a feature was intro-
duced in Java 8 (and sometimes Java 7). We use Java 8 syntax throughout, including
using lambda expressions in code that would previously have used a trivial anony-
mous nested class.

Changes in the Sixth Edition

The fifth edition of this book covers Java 5, whereas this edition covers Java 8. The
language, and the working environment of the programmer, have both changed
considerably since the last edition was published nearly a decade ago. This new edi-
tion has, accordingly, changed a vast amount as well. One very important aspect is
that this book does not attempt to be as complete a description of the core platform
APIs as was possible in earlier editions.

For one thing, the sheer size of the core APIs render this utterly impractical for a
printed book. A more compelling reason is the continued rise of fast, always-on
Internet. The amount of Java programmers who regularly work without Internet
access is now vanishingly small. The proper place for detailed reference API docs is
online, not printed out.

Accordingly, the reference section, which occupied two-thirds of the fifth edition, is
gone. In the space we've recovered, we have tried to update the concept of what it
means to be a “Nutshell” guide. The modern Java developer needs to know more
than just syntax and APIs. As the Java environment has matured, such topics as
concurrency, object-oriented design, memory, and the Java type system have all
gained in importance—even among mainstream developers.

Xiii

www.it-ebooks.info

http://www.it-ebooks.info/

In this edition, we have tried to reflect this changed world, and have largely aban-
doned the historical approach of earlier editions. In particular, the exhaustive
attempt to detail exactly which version of Java particular features arrived with has
mostly been abandoned—only the most recent versions of Java are likely to be of
interest to the majority of Java developers.

Contents of This Book

The first six chapters of this book document the Java language and the Java platform
—they should all be considered essential reading. The book is biased toward the
Oracle/OpenJDK (Open Java Development Kit) implementation of Java, but not
greatly so—developers working with other Java environments will still find plenty to
occupy them. Part I includes:

Chapter 1, Introduction
This chapter is an overview of the Java language and the Java platform. It
explains the important features and benefits of Java, including the lifecycle of a
Java program. We also touch on Java security and answer some criticisms of
Java.

Chapter 2, Java Syntax from the Ground Up

This chapter explains the details of the Java programming language, including
the Java 8 language changes. It is a long and detailed chapter that does not
assume substantial programming experience. Experienced Java programmers
can use it as a language reference. Programmers with substantial experience
with languages such as C and C++ should be able to pick up Java syntax
quickly by reading this chapter; beginning programmers with only a modest
amount of experience should be able to learn Java programming by studying
this chapter carefully, although it is best read in conjunction with a second text
(such as O’Reilly’s Head First Java by Bert Bates and Kathy Sierra).

Chapter 3, Object-Oriented Programming in Java
This chapter describes how the basic Java syntax documented in Chapter 2 is
used to write simple object-oriented programs using classes and objects in Java.
The chapter assumes no prior experience with OO programming. It can be
used as a tutorial by new programmers or as a reference by experienced Java
programmers.

Chapter 4, The Java Type System
This chapter builds on the basic description of object-oriented programming in
Java, and introduces the other aspects of Java’s type system, such as generic
types, enumerated types, and annotations. With this more complete picture, we
can discuss the biggest change in Java 8—the arrival of lambda expressions.

Chapter 5, Introduction to Object-Oriented Design in Java
This chapter is an overview of some basic techniques used in the design of
sound object-oriented programs, and briefly touches on the topic of design pat-
terns and their use in software engineering.

xiv | Preface

www.it-ebooks.info

http://bit.ly/head_first_java_2e
http://www.it-ebooks.info/

Chapter 6, Java’s Approach to Memory and Concurrency
This chapter explains how the Java Virtual Machine manages memory on
behalf of the programmer, and how memory and visibility is intimately
entwined with Java’s support for concurrent programming and threads.

These first six chapters teach you the Java language and get you up and running
with the most important concepts of the Java platform. The second part of the book
is all about how to get real programming work done in the Java environment. It
contains plenty of examples and is designed to complement the cookbook approach
found in some other texts. Part II includes:

Chapter 7, Programming and Documentation Conventions
This chapter documents important and widely adopted Java programming con-
ventions. It also explains how you can make your Java code self-documenting
by including specially formatted documentation comments.

Chapter 8, Working with Java Collections and Arrays
This chapter introduces Java’s standard collections libraries. These contain data
structures that are vital to the functioning of virtually every Java program—
such as List, Map, and Set. The new Stream abstraction and the relationship
between lambda expressions and the collections is explained in detail.

Chapter 9, Handling Common Data Formats
This chapter discusses how to use Java to work effectively with very common
data formats, such as text, numbers, and temporal (date and time) information.

Chapter 10, File Handling and I/O
This chapter covers several different approaches to file access—from the more
classic approach found in older versions of Java, through to more modern and
even asynchronous styles. The chapter concludes with a short introduction to
networking with the core Java platform APIs.

Chapter 11, Classloading, Reflection, and Method Handles
This chapter introduces the subtle art of metaprogramming in Java—first intro-
ducing the concept of metadata about Java types, then turning to the subject of
classloading and how Java’s security model is linked to the dynamic loading of
types. The chapter concludes with some applications of classloading and the
relatively new feature of method handles.

Chapter 12, Nashorn
This chapter describes Nashorn, an implementation of JavaScript running atop
the Java Virtual Machine. Nashorn ships with Java 8, and provides an alterna-
tive to other JavaScript implementations. Toward the end of the chapter, we
discuss Avatar.js—a server-side technology compatible with Node.

Chapter 13, Platform Tools and Profiles
Oracles JDK (as well as OpenJDK) includes a number of useful Java
development tools, most notably the Java interpreter and the Java compiler.
This chapter documents those tools. The second part of the chapter covers

Preface | xv

www.it-ebooks.info

http://www.it-ebooks.info/

Compact Profiles—a new feature in Java 8 allowing cut-down Java Runtime
Environments (JREs) with a significantly reduced footprint.

Related Books

O'Reilly publishes an entire series of books on Java programming, including several
companion books to this one. The companion books are:

Learning Java by Pat Niemeyer and Daniel Leuck
This book is a comprehensive tutorial introduction to Java, and includes topics
such as XML and client-side Java programming.

Java 8 Lambdas by Richard Warburton
This book documents the new Java 8 feature of lambda expressions in detail,
and introduces concepts of functional programming that may be unfamiliar to
Java developers coming from earlier versions.

Head First Java by Bert Bates and Kathy Sierra
This book uses a unique approach to teaching Java. Developers who think visu-
ally often find it a great accompaniment to a traditional Java book.

You can find a complete list of Java books from O’Reilly at http://java.oreilly.com/.

Examples Online

The examples in this book are available online and can be downloaded from the
home page for the book at http://www.oreilly.com/catalog/javanut6. You may also
want to visit this site for any important notes or errata that have been published
there.

Conventions Used in This Book

We use the following formatting conventions in this book:

Italic
Used for emphasis and to signify the first use of a term. Italic is also used for
commands, email addresses, websites, FTP sites, and file and directory names.

Constant Width
Used for all Java code as well as for anything that you would type literally when
programming, including keywords, data types, constants, method names, vari-
ables, class names, and interface names.

Constant Width Italic
Used for the names of function arguments and generally as a placeholder to
indicate an item that should be replaced with an actual value in your program.
Sometimes used to refer to a conceptual section or line of code as in
statement.

xvi | Preface

www.it-ebooks.info

http://bit.ly/Learn_Java_4E
http://bit.ly/java_8_lambdas
http://bit.ly/head_first_java_2e
http://java.oreilly.com/
http://www.oreilly.com/catalog/javanut6
http://www.it-ebooks.info/

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Request for Comments

You can send comments, fixes and suggestions directly to the authors by using the
email address javanut6@gmail.com.

Please address comments and questions concerning this book to the publisher:
O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/java_nutshell_6e.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our
website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xvii

www.it-ebooks.info

mailto:javanut6@gmail.com
http://bit.ly/java_nutshell_6e
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

Safari® Books Online

Safari Books Online is an on-demand digital
‘ OC library that delivers expert content in both book
J and video form from the world’s leading authors

in technology and business.

Technology professionals, software developers, web designers, and business and
creative professionals use Safari Books Online as their primary resource for
research, problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’'Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams,
Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New
Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For
more information about Safari Books Online, please visit us online.

Acknowledgments

Meghan Blanchette was the editor of the sixth edition—her attention to detail and
cheerful, grounded approach helped provide extra momentum at very useful
moments throughout the book’s development.

Special thanks are due to Jim Gough, Richard Warburton, John Oliver, Trisha Gee,
and Stephen Colebourne.

As always, Martijn Verburg has been a good friend, business partner, sounding
board, and font of useful advice.

Ben, in particular, would like to thank everyone who has given him feedback and
helped him improve as a writer. Caroline Kvitka, Victor Grazi, Tori Weildt, and
Simon Ritter deserve special mention for their helpful suggestions. If he’s failed to
take all of their excellent advice in this text the blame is, of course, his.

xviii | Preface

www.it-ebooks.info

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
http://www.it-ebooks.info/

Introducing Java

Part I is an introduction to the Java language and the Java platform. These chapters
provide enough information for you to get started using Java right away:

Chapter 1, Introduction

Chapter 2, Java Syntax from the Ground Up

Chapter 3, Object-Oriented Programming in Java

Chapter 4, The Java Type System

Chapter 5, Introduction to Object-Oriented Design in Java
Chapter 6, Java’s Approach to Memory and Concurrency

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to the Java
Environment

Welcome to Java 8. We may be welcoming you back. You may be coming to this eco-
system from another language, or maybe this is your first programming language.
Whatever road you may have traveled to get here: welcome. Were glad you've
arrived.

Java is a powerful, general-purpose programming environment. It is one of the most
widely used programming languages in the world, and has been exceptionally suc-
cessful in business and enterprise computing.

In this chapter, we'll set the scene by describing the Java language (which program-
mers write their applications in), the Java Virtual Machine (which executes those
applications), and the Java ecosystem (which provides a lot of the value of the pro-
gramming environment to development teams).

We'll briefly cover the history of the Java language and virtual machine, before mov-
ing on to discuss the lifecycle of a Java program and clear up some common ques-
tions about the differences between Java and other environments.

At the end of the chapter, we'll introduce Java security, and discuss some of the
aspects of Java which relate to secure coding.

The Language, the JVM, and the Ecosystem

The Java programming environment has been around since the late 1990s. It com-
prises the Java language, and the supporting runtime, otherwise known as the Java
Virtual Machine (JVM).

At the time that Java was initially developed, this split was considered novel, but
recent trends in software development have made it more commonplace. Notably,

www.it-ebooks.info

http://www.it-ebooks.info/

Microsoft’s NET environment, announced a few years after Java, adopted a very
similar approach to platform architecture.

One important difference between Microsoft’s .NET platform and Java is that Java
was always conceived as a relatively open ecosystem of multiple vendors. Through-
out Java’s history, these vendors both cooperated and competed on aspects of Java
technology.

One of the main reasons for the success of Java is that this ecosystem is a standar-
dized environment. This means there are specifications for the technologies that
comprise the environment. These standards give the developer and consumer confi-
dence that the technology will be compatible with other components, even if they
come from a different technology vendor.

The current steward of Java is Oracle Corporation (who acquired Sun
Microsystems, the originator of Java). Other corporations, such as Red Hat, IBM,
Hewlett-Packard, SAP, Apple, and Fujitsu are also heavily involved in producing
implementations of standardized Java technologies.

There is also an open source version of Java, called OpenJDK, which many of these
companies collaborate on.

Java actually comprises several different, but related environments and specifica-
tions—Java Mobile Edition (Java ME), Java Standard Edition (Java SE), and Java
Enterprise Edition (Java EE). In this book, we'll only cover Java SE, version 8.

We will have more to say about standardization later, so let's move on to discuss the
Java language and JVM as separate, but related concepts.

What Is the Java Language?

Java programs are written as source code in the Java language. This is a human-
readable programming language, which is class based and object oriented. It is
considered to be relatively easy to read and write (if occasionally a bit verbose).

Java is intended to be easy to learn and to teach. It builds on industry experience
with languages like C++ and tries to remove complex features as well as preserving
“what works” from previous programming languages.

Overall, Java is intended to provide a stable, solid base for companies to develop
business-critical applications.

As a programming language, it has a relatively conservative design and a slow rate
of change. These properties are a conscious attempt to serve the goal of protecting
the investment that businesses have made in Java technology.

The language has undergone gradual revision (but no complete rewrites) since its
inception in 1996. This does mean that some of Java’s original design choices, which
were expedient in the late 1990s, are still affecting the language today—see Chapters
2 and 3 for more details.

4 | Chapter 1:Introduction to the Java Environment

www.it-ebooks.info

http://www.it-ebooks.info/

Java 8 has added the most radical changes seen in the language for almost a decade
(some would say since the birth of Java). Features like lambda expressions and the
overhaul of the core Collections code will change forever the way that most Java
developers write code.

The Java language is governed by the Java Language Specification (JLS), which
defines how a conforming implementation must behave.

What Is the JVM?

The JVM is a program that provides the runtime environment necessary for Java
programs to execute. Java programs cannot run unless there is a JVM available for
the appropriate hardware and OS platform we wish to execute on.

Fortunately, the JVM has been ported to run on a large number of environments—
anything from a set-top box or Blu-ray player to a huge mainframe will probably
have a JVM available for it.

Java programs are typically started by a command line, such as:
java <arguments> <program name>

This brings up the JVM as an operating system process that provides the Java run-
time environment, and then executes our program in the context of the freshly
started (and empty) virtual machine.

It is important to understand that when the JVM takes in a Java program for execu-
tion, the program is not provided as Java language source code. Instead, the Java
language source must have been converted (or compiled) into a form known as Java
bytecode. Java bytecode must be supplied to the JVM in a format called class files—
which always have a .class extension.

The JVM is an interpreter for the bytecode form of the program—it steps through
one bytecode instruction at a time. However, you should also be aware that both the
JVM and the user program are capable of spawning additional threads of execution,
so that a user program may have many different functions running simultenously.

The design of the JVM built on many years of experience with earlier programming
environments, notably C and C++, so we can think of it as having several different
goals—which are all intended to make life easier for the programmer:

o Comprise a container for application code to run inside

« Provide a secure execution environment as compared to C/C++
o Take memory management out of the hands of developers

o Provide a cross-platform execution environment

These objectives are often mentioned together when discussing the platform.

We've already mentioned the first of these goals, when we discussed the JVM and its
bytecode interpreter—it functions as the container for application code.

The Language, the JVM, and the Ecosystem | 5

www.it-ebooks.info

5
-
=
o
Q.
c
(2]
=
o
3

http://www.it-ebooks.info/

We'll discuss the second and third goals in Chapter 6, when we talk about how the
Java environment deals with memory management.

The fourth goal, sometimes called “write once, run anywhere” (WORA), is the
property that Java class files can be moved from one execution platform to another,
and they will run unaltered provided a JVM is available.

This means that a Java program can be developed (and converted to class files) on
an Apple Mac machine running OS X, and then the class files can be moved to
Linux or Microsoft Windows (or other platforms) and the Java program will run
without any further work needed.

The Java environment has been very widely ported, including
to platforms that are very different from mainstream plat-
forms like Linux, Mac, and Windows. In this book, we use the
phrase “most implementations” to indicate those platforms
that the majority of developers are likely to encounter. Mac,
Windows, Linux, Solaris, BSD Unix, AIX, and the like are all
considered “mainstream platforms” and count within “most
implementations.”

In addition to these four primary goals, there is another aspect of the JVM’s design
that is not always recognized or discussed—it makes use of runtime information to
self-manage.

Software research in the 1970s and 1980s revealed that the runtime behavior of pro-
grams has a large amount of interesting and useful patterns that cannot be deduced
at compile time. The JVM was the first truly mainstream platform to make use of
this research.

It collects runtime information to make better decisions about how to execute code.
That means that the JVM can monitor and optimize a program running on it in a
manner not possible for platforms without this capability.

A key example is the runtime fact that not all parts of a Java program are equally
likely to be called during the lifetime of the program—some portions will be called
far, far more often than others. The Java platform takes advantage of this fact with a
technology called just-in-time (JIT) compilation.

In the HotSpot JVM (which was the JVM that Sun first shipped as part of Java 1.3,
and is still in use today), the JVM first identifies which parts of the program are
called most often—the “hot methods” Then, the JVM compiles these hot methods
directly into machine code—bypassing the JVM interpreter.

The JVM uses the available runtime information to deliver higher performance than
was possible from purely interpreted execution. In fact, the optimizations that the
JVM uses now in many cases produce performance which surpasses compiled C
and C++ code.

6 | Chapter 1:Introduction to the Java Environment

www.it-ebooks.info

http://www.it-ebooks.info/

The standard that describes how a properly functioning JVM must behave is called
the JVM Specification.

What Is the Java Ecosystem?

The Java language is easy to learn and contains relatively few abstractions, com-
pared to other programming languages. The JVM provides a solid, portable, high-
performance base for Java (or other languages) to execute on. Taken together, these
two connected technologies provide a foundation that businesses can feel confident
about when choosing where to base their development efforts.

The benefits of Java do not end there, however. Since Javas inception, an extremely
large ecosystem of third-party libraries and components has grown up. This means
that a development team can benefit hugely from the existence of connectors and
drivers for practically every technology imaginable—both proprietary and open
source.

In the modern technology ecosystem it is now rare indeed to find a technology
component that does not offer a Java connector. From traditional relational databa-
ses, to NoSQL, to every type of enterprise monitoring system, to messaging systems
—everything integrates with Java.

It is this fact that has been a major driver of adoption of Java technologies by enter-
prises and larger companies. Development teams have been able to unlock their
potential by making use of preexisting libraries and components. This has promo-
ted developer choice and encouraged open, best-of-breed architectures with Java
technology cores.

A Brief History of Java and the JVM

Java 1.0 (1996)
This was the first public version of Java. It contained just 212 classes organized
in eight packages. The Java platform has always had an emphasis on backward
compatibility, and code written with Java 1.0 will still run today on Java 8
without modification or recompilation.

Java 1.1 (1997)
This release of Java more than doubled the size of the Java platform. This
release introduced “inner classes” and the first version of the Reflection API.

Java 1.2 (1998)
This was a very significant release of Java; it tripled the size of the Java plat-
form. This release marked the first appearance of the Java Collections API
(with sets, maps, and lists). The many new features in the 1.2 release led Sun to
rebrand the platform as “the Java 2 Platform” The term “Java 2” was simply a
trademark, however, and not an actual version number for the release.

ABrief History of Javaand the UM | 7

www.it-ebooks.info

5
-
=
o
Qo
c
a
=
o
-]

http://www.it-ebooks.info/

Java 1.3 (2000)

This was primarily a maintenance release, focused on bug fixes, stability, and
performance improvements. This release also brought in the HotSpot Java Vir-
tual Machine, which is still in use today (although heavily modified and
improved since then).

Java 1.4 (2002)

This was another fairly big release, adding important new functionality such as
a higher-performance, low-level I/O API; regular expressions for text handling;
XML and XSLT libraries; SSL support; a logging APIL and cryptography
support.

Java 5 (2004)

This large release of Java introduced a number of changes to the core language
itself including generic types, enumerated types (enums), annotations, varargs
methods, autoboxing, and a new for loop. These changes were considered sig-
nificant enough to change the major version number, and to start numbering
as major releases. This release included 3,562 classes and interfaces in 166
packages. Notable additions included utilities for concurrent programming, a
remote management framework, and classes for the remote management and
instrumentation of the Java VM itself.

Java 6 (2006)

This release was also largely a maintenance and performance release. It intro-
duced the Compiler API, expanded the usage and scope of annotations, and
provided bindings to allow scripting languages to interoperate with Java. There
were also a large number of internal bugfixes and improvements to the JVM
and the Swing GUI technology.

Java 7 (2011)

The first release of Java under Oracle’s stewardship included a number of major
upgrades to the language and platform. The introduction of try-with-resources
and the NIO.2 API enabled developers to write much safer and less error-prone
code for handling resources and I/O. The Method Handles API provided a
simpler and safer alternative to reflection—and opened the door for invokedy
namic (the first new bytecode since version 1.0 of Java).

Java 8 (2014)

This latest release of Java introduces potentially the most significant changes to
the language since Java 5 (or possibly ever). The introduction of lambda
expressions promises the ability to significantly enhance the productivity of
developers; the Collections have been updated to make use of lambdas, and the
machinery required to achieve this provides a fundamental change in Java’s
approach to object orientation. Other major updates include an implementa-
tion of JavaScript that runs on the JVM (Nashorn), new date and time support,
and Java profiles (which provide for different versions of Java that are especially
suitable for headless or server deployments).

8

Chapter 1: Introduction to the Java Environment

www.it-ebooks.info

http://www.it-ebooks.info/

The Lifecycle of a Java Program

5
)
To better understand how Java code is compiled and executed, and the difference e
between Java and other types of programming environments, consider the pipeline a
in Figure 1-1.)
o T i
1 I
| 3 New |
Jjava .lass 1/ Type !
—— | javac oovo1s | dassloadi // | |
— 001011 | classloading H \
— 100010 ! !
: interpreter :
] I
| T
] ! WM i

Figure 1-1. How Java code is compiled and loaded

This starts wth Java source, and passes it through the javac program to produce
class files—which contain the source code compiled to Java bytecode. The class file
is the smallest unit of functionality the platform will deal with, and the only way to
get new code into a running program.

New class files are onboarded via the classloading mechanism (see Chapter 10 for a
lot more detail on how classloading works). This makes the new type available to
the interpreter for execution.

Frequently Asked Questions

In this section, we'll discuss some of the most frequently asked questions about Java
and the lifecycle of programs written in the Java environment.

What is bytecode?

When developers are first introduced to the JVM, they sometimes think of it as “a
computer inside a computer” It’s then easy to imagine bytecode as “machine code
for the CPU of the internal computer” or “machine code for a made-up processor.”

In fact, bytecode is not very similar to machine code that would run on a real hard-
ware processor. Computer scientists would call bytecode a type of “intermediate
representation”—a halfway house between source code and machine code.

The whole aim of bytecode is to be a format that can be executed efficiently by the
JVM’s interpreter.

The Lifecycle of a Java Program | 9

www.it-ebooks.info

http://www.it-ebooks.info/

Is javac a compiler?

Compilers usually produce machine code, but javac produces bytecode, which is not
that similar to machine code. However, class files are a bit like object files (like Win-
dows .dll files, or Unix .so files)—and they are certainly not human readable.

In theoretical computer science terms, javac is most similar to the “front half” of a
compiler—it creates the intermediate representation that can then be used to pro-
duce (emit) machine code.

However, because creation of class files is a separate build-time step that resembles
compilation in C/C++, many developers consider running javac to be compilation.
In this book, we will use the terms “source code compiler” or “javac compiler” to
mean the production of class files by javac.

We will reserve “compilation” as a standalone term to mean JIT compilation—as it’s
JIT compilation that actually produces machine code.

Why is it called “bytecode™?

The instruction code (opcode) is just a single byte (some operations also have
parameters that follow them in the bytestream)—so there are only 256 possible
instructions. In practice, some are unused—about 200 are in use, but some of them
aren’t emitted by recent versions of javac.

Is bytecode optimized?

In the early days of the platform, javac produced heavily optimized bytecode. This
turned out to be a mistake. With the advent of JIT compilation, the important meth-
ods are going to be compiled to very fast machine code. It’s therefore very important
to make the job of the JIT compiler easier—as there are much bigger gains available
from JIT compilation than there are from optimizing bytecode, which will still have
to be interpreted.

Is bytecode really machine independent? What about things like endianness?

The format of bytecode is always the same, regardless of what type of machine it
was created on. This includes the byte ordering (sometimes called “endianness”) of
the machine. For readers who are interested in the details, bytecode is always big-
endian.

Is Java an interpreted language?

The JVM is basically an interpreter (with JIT compilation to give it a big perfor-
mance boost). However, most interpreted languages (such as PHP, Perl, Ruby, and
Python) directly interpret programs from source form (usually by constructing an
abstract syntax tree from the input source file). The JVM interpreter, on the other
hand, requires class files—which, of course, require a separate source code compila-
tion step with javac.

10 | Chapter 1: Introduction to the Java Environment

www.it-ebooks.info

http://www.it-ebooks.info/

Can other languages run on the JVUM?

Yes. The JVM can run any valid class file, so this means that non-Java languages can
run on the JVM in one of two ways. Firstly, they could have a source code compiler
(similar to javac) that produces class files, which would run on the JVM just like
Java code (this is the approach taken by languages like Scala).

Alternatively, a non-Java language could implement an interpreter and runtime in
Java, and then interpret the source form of their language. This second option is the
approach taken by languages like JRuby (but JRuby has a very sophisticated runtime
that is capable of “secondary JIT compilation” in some circumstances).

Java Security

Java has been designed from the ground up with security in mind; this gives it a
great advantage over many other existing systems and platforms. The Java security
architecture was designed by security experts and has been studied and probed by
many other security experts since the inception of the platform. The consensus is
that the architecture itself is strong and robust, without any security holes in the
design (at least none that have been discovered yet).

Fundamental to the design of the security model is that bytecode is heavily restric-
ted in what it can express—there is no way, for example, to directly address mem-
ory. This cuts out entire classes of security problems that have plagued languages
like C and C++. Furthermore, the VM goes through a process known as bytecode
verification whenever it loads an untrusted class, which removes a further large class
of problems (see Chapter 10 for more about bytecode verification).

Despite all this, however, no system can guarantee 100% security, and Java is no
exception.

While the design is still theoretically robust, the implementation of the security
architecture is another matter, and there is a long history of security flaws being
found and patched in particular implementations of Java.

In particular, the release of Java 8 was delayed, at least partly, due to the discovery of
a number of security problems that required considerable effort to fix.

In all likelihood, security flaws will continue to be discovered (and patched) in Java
VM implementations.

However, it is also worth noting that the majority of Java’s recent security issues have
been closely linked to Java as a desktop technology. For practical server-side coding,
Java remains perhaps the most secure general-purpose platform currently available.

Comparing Java to Other Languages

In this section, we'll briefly highlight some differences between the Java platform
and other programming environments you may be familiar with.

JavaSecurity | 11

www.it-ebooks.info

5
(=g
=
o
Qo
c
a
=
o
3

http://www.it-ebooks.info/

Java Compared to C

o Java is object oriented; C is procedural.

Java is portable as class files; C needs to be recompiled.

Java provides extensive instrumentation as part of the runtime.

Java has no pointers and no equivalent of pointer arithmetic.

Java provides automatic memory management via garbage collection.
Java has no ability to lay out memory at a low level (no structs).

Java has no preprocessor.

Java Compared to (++

o Java has a simplified object model compared to C++.

Java’s dispatch is virtual by default.

Java is always pass-by-value (but one of the possibilities for Javas values are
object references).

Java does not support full multiple inheritance.
Java’s generics are less powerful (but also less dangerous) than C++ templates.

Java has no operator overloading.

Java Compared to PHP

o Java is statically typed; PHP is dynamically typed.

o Java has a JIT; PHP does not (but might in version 6).

o Java is a general-purpose language; PHP is rarely found outside of websites.

o Java is multithreaded; PHP is not.

Java Compared to JavaScript

o Java is statically typed; JavaScript is dynamically typed.

Java uses class-based objects; JavaScript is prototype based.
Java provides good object encapsulation; Javascript does not.
Java has namespaces; JavaScript does not.

Java is multithreaded; JavaScript is not.

12

Chapter 1: Introduction to the Java Environment

www.it-ebooks.info

http://www.it-ebooks.info/

Answering Some Criticisms of Java

Java has had a long history in the public eye and, as such, has attracted its fair share
of criticism over the years. Some of this negative press can be attributed to some
technical shortcomings combined with rather overzealous marketing in the first
versions of Java.

Some criticisms have, however, entered technical folklore despite no longer being
very accurate. In this section, we'll look at some common grumbles and the extent
to which they’re true for modern versions of the platform.

Overly Verbose

The Java core language has sometimes been criticized as overly verbose. Even simple
Java statments such as Object o = new Object(); seem to be repetitious—the type
Object appears on both the left and right side of the assignment. Critics point out
that this is essentially redundant, that other languages do not need this duplication
of type information, and that many support features (e.g., type inference) that
remove it.

The counterpoint to this argument is that Java was designed from the start to be
easy to read (code is read more often than written) and that many programmers,
especially novices, find the extra type information helpful when reading code.

Java is widely used in enterprise environments, which often have separate dev and
ops teams. The extra verbosity can often be a blessing when responding to an out-
age call, or when needing to maintain and patch code that was written by developers
who have long since moved on.

In recent versions of Java (7 and later), the language designers have attempted to
respond to some of these points, by finding places where the syntax can become less
verbose and by making better use of type information. For example:

// Files helper methods
byte[] contents =
Files.readAllBytes(Paths.get("/home/ben/myFile.bin"));

// Diamond syntax for repeated type information
List<String> 1 = new ArraylList<>();

// Lambda expressions simplify Runnables
ExecutorService threadPool = Executors.newScheduledThreadPool(2);
threadPool.submit(() -> { System.out.println("On Threadpool"); });

However, Javas overall philosophy is to make changes to the language only very
slowly and carefully, so the pace of these changes may not satsify detractors
completely.

Answering Some Criticisms of Java | 13

www.it-ebooks.info

5
-
=
o
Qo
c
(2]
=
o
3

http://www.it-ebooks.info/

Slow to Change

The original Java language is now well over 15 years old, and has not undergone a
complete revision in that time. Many other languages (e.g., Microsofts C#) have
released backwards-incompatible versions in the same period—and some develop-
ers criticize Java for not doing likewise.

Furthermore, in recent years, the Java language has come under fire for being slow
to adopt language features that are now commonplace in other languages.

The conservative approach to language design that Sun (and now Oracle) have dis-
played is an attempt to avoid imposing the costs and externalities of misfeatures on
a very large user base. Many Java shops have made major investments in the tech-
nology, and the language designers have taken seriously the responsibility of not
affecting the existing user and install base.

Each new language feature needs to be very carefully thought about—not only in
isolation, but in terms of how it will interact with all the existing features of the lan-
guage. New features can sometimes have impacts beyond their immediate scope—
and Java is widely used in very large codebases, where there are more potential
places for an unexpected interaction to manifest.

It is almost impossible to remove a feature that turns out to be incorrect after it has
shipped—]Java has a couple of misfeatures (such as the finalization mechanism) and
it has never been possible to remove them safely without impacting the install base.
The language designers have taken the view that extreme caution is required when
evolving the language.

Having said that, the new language features present in Java 8 are a significant step
towards addressing the most common complaints about missing features, and
should cover many of the idioms that developers have been asking for.

Performance Problems

The Java platform is still sometimes criticized as being slow—but of all the criti-
cisms that are leveled at the platform, this is probably the one that is least justified.

Release 1.3 of Java brought in the HotSpot Virtual Machine and its JIT compiler.
Since then, there has been almost 15 years of continual innovation and improve-
ment in the virtual machine and its performance. The Java platform is now blaz-
ingly fast, regularly winning performance benchmarks on popular frameworks, and
even beating native-compiled C and C++.

Criticism in this area appears to be largely caused by a folk memory that Java used
to be slow at some point in the past. Some of the larger and more sprawling archi-
tectures that Java has been used within may also have contributed to this impres-
sion.

The truth is that any large architecture will require benchmarking, analysis, and
performance tuning to get the best out of it—and Java is no exception.

14 | Chapter 1: Introduction to the Java Environment

www.it-ebooks.info

http://www.it-ebooks.info/

The core of the platform—language and JVM—is and remains one of the fastest
general-use environments available to the developer.

Insecure

During 2013 there were a number of security vulnerabilities in the Java platform,
which caused the release date of Java 8 to be pushed back. Even before this, some
people had criticized Java’s record of security vulnerabilities.

Many of these vulnerabilities involved the desktop and GUI components of the Java
system, and wouldn’t affect websites or other server-side code written in Java.

All programming platforms have security issues at times—and many other lan-
guages have a comparable history of security vulnerabilities that have been signifi-
cantly less well publicized.

Too Corporate

Java is a platform that is extensively used by corporate and enterprise developers.
The perception that it is too corporate is therefore an unsurprising one—Java has
often been perceived as lacking the “free-wheeling” style of languages that are
deemed to be more community oriented.

In truth, Java has always been, and remains, a very widely used language for com-
munity and free or open source software development. It is one of the most popular
languages for projects hosted on GitHub and other project hosting sites.

Finally, the most widely used implementation of the language itself is based on
Open]DK—which is itself an open source project with a vibrant and growing com-
munity.

Answering Some Criticisms of Java | 15

www.it-ebooks.info

5
-
=
o
Q.
c
a
=
o
-]

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

&% |Java Syntax from the Ground Up

This chapter is a terse but comprehensive introduction to Java syntax. It is written
primarily for readers who are new to the language but have some previous pro-
gramming experience. Determined novices with no prior programming experience
may also find it useful. If you already know Java, you should find it a useful lan-
guage reference. The chapter includes some comparisons of Java to C and C++ for
the benefit of programmers coming from those languages.

This chapter documents the syntax of Java programs by starting at the very lowest
level of Java syntax and building from there, covering increasingly higher orders of
structure. It covers:

o The characters used to write Java programs and the encoding of those
characters.

o Literal values, identifiers, and other tokens that comprise a Java program.
o The data types that Java can manipulate.
o The operators used in Java to group individual tokens into larger expressions.

o Statements, which group expressions and other statements to form logical
chunks of Java code.

o Methods, which are named collections of Java statements that can be invoked
by other Java code.

o Classes, which are collections of methods and fields. Classes are the central
program element in Java and form the basis for object-oriented programming.
Chapter 3 is devoted entirely to a discussion of classes and objects.

« Packages, which are collections of related classes.

17

www.it-ebooks.info

http://www.it-ebooks.info/

o Java programs, which consist of one or more interacting classes that may be
drawn from one or more packages.

The syntax of most programming languages is complex, and Java is no exception. In
general, it is not possible to document all elements of a language without referring
to other elements that have not yet been discussed. For example, it is not really pos-
sible to explain in a meaningful way the operators and statements supported by Java
without referring to objects. But it is also not possible to document objects thor-
oughly without referring to the operators and statements of the language. The pro-
cess of learning Java, or any language, is therefore an iterative one.

Java Programs from the Top Down

Before we begin our bottom-up exploration of Java syntax, let’s take a moment for a
top-down overview of a Java program. Java programs consist of one or more files, or
compilation units, of Java source code. Near the end of the chapter, we describe the
structure of a Java file and explain how to compile and run a Java program. Each
compilation unit begins with an optional package declaration followed by zero or
more import declarations. These declarations specify the namespace within which
the compilation unit will define names, and the namespaces from which the compi-
lation unit imports names. We'll see package and import again later in this chapter
in “Packages and the Java Namespace” on page 88.

The optional package and import declarations are followed by zero or more refer-
ence type definitions. We will meet the full variety of possible reference types in
Chapters 3 and 4, but for now, we should note that these are most often either class
or interface definitions.

Within the definition of a reference type, we will encounter members such as fields,
methods, and constructors. Methods are the most important kind of member. Meth-
ods are blocks of Java code comprised of statements.

With these basic terms defined, lets start by approaching a Java program from the
bottom up by examining the basic units of syntax—often referred to as lexical
tokens.

Lexical Structure

This section explains the lexical structure of a Java program. It starts with a discus-
sion of the Unicode character set in which Java programs are written. It then covers
the tokens that comprise a Java program, explaining comments, identifiers, reserved
words, literals, and so on.

The Unicode Character Set

Java programs are written using Unicode. You can use Unicode characters any-
where in a Java program, including comments and identifiers such as variable
names. Unlike the 7-bit ASCII character set, which is useful only for English, and

18 | Chapter2: Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

the 8-bit ISO Latin-1 character set, which is useful only for major Western European
languages, the Unicode character set can represent virtually every written language
in common use on the planet.

If you do not use a Unicode-enabled text editor, or if you do
not want to force other programmers who view or edit your
code to use a Unicode-enabled editor, you can embed Unicode
characters into your Java programs using the special Unicode
escape sequence \uxxxx, in other words, a backslash and a
lowercase u, followed by four hexadecimal characters. For
example, \u@020 is the space character, and \u@3cO is the
character m.

Java has invested a large amount of time and engineering effort in ensuring that its
Unicode support is first class. If your business application needs to deal with global
users, especially in non-Western markets, then the Java platform is a great choice.

Case Sensitivity and Whitespace

Java is a case-sensitive language. Its keywords are written in lowercase and must
always be used that way. That is, While and WHILE are not the same as the while
keyword. Similarly, if you declare a variable named 1 in your program, you may not
refer to it as I.

In general, relying on case sensitivity to distinguish identifiers
is a terrible idea. Do not use it in your own code, and in par-
ticular never give an identifier the same name as a keyword
but differently cased.

Java ignores spaces, tabs, newlines, and other whitespace, except when it appears
within quoted characters and string literals. Programmers typically use whitespace
to format and indent their code for easy readability, and you will see common
indentation conventions in the code examples of this book.

Comments

Comments are natural-language text intended for human readers of a program.
They are ignored by the Java compiler. Java supports three types of comments. The
first type is a single-line comment, which begins with the characters // and contin-
ues until the end of the current line. For example:

int 1 = 0; // Initialize the loop variable

The second kind of comment is a multiline comment. It begins with the charac-
ters /* and continues, over any number of lines, until the characters */. Any text
between the /* and the */ is ignored by javac. Although this style of comment is
typically used for multiline comments, it can also be used for single-line comments.

Lexical Structure | 19

www.it-ebooks.info

-
]
<
o
(2]
<
3
-
o
X

http://www.it-ebooks.info/

This type of comment cannot be nested (i.e., one /* */ comment cannot appear
within another). When writing multiline comments, programmers often use extra *
characters to make the comments stand out. Here is a typical multiline comment:
/*

* First, establish a connection to the server.

* If the connection attempt fails, quit right away.

*/
The third type of comment is a special case of the second. If a comment begins
with /**, it is regarded as a special doc comment. Like regular multiline comments,
doc comments end with */ and cannot be nested. When you write a Java class you
expect other programmers to use, use doc comments to embed documentation
about the class and each of its methods directly into the source code. A program
named javadoc extracts these comments and processes them to create online docu-
mentation for your class. A doc comment can contain HTML tags and can use addi-
tional syntax understood by javadoc. For example:

/**
* Upload a file to a web server.
*
* @param file The file to upload.
* @return <tt>true</tt> on success,

* <tt>false</tt> on failure.
* @author David Flanagan
*/

See Chapter 7 for more information on the doc comment syntax and Chapter 13 for
more information on the javadoc program.

Comments may appear between any tokens of a Java program, but may not appear
within a token. In particular, comments may not appear within double-quoted
string literals. A comment within a string literal simply becomes a literal part of that
string.

Reserved Words

The following words are reserved in Java (they are part of the syntax of the language
and may not be used to name variables, classes, and so forth):

abstract const final int public throw
assert continue finally interface return throws
boolean default float long short transient
break do for native static true

byte double goto new strictfp try

case else if null super void
catch enum implements package switch volatile
char extends import private synchronized while
class false instanceof protected this

We'll meet each of these reserved words again later in this book. Some of them are
the names of primitive types and others are the names of Java statements, both of

20 | Chapter 2:Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

which are discussed later in this chapter. Still others are used to define classes and
their members (see Chapter 3).

Note that const and goto are reserved but aren’t actually used in the language, and
that interface has an additional variant form—@interface, which is used when
defining types known as annotations. Some of the reserved words (notably final
and default) have a variety of different meanings depending on context.

Identifiers

An identifier is simply a name given to some part of a Java program, such as a class,
a method within a class, or a variable declared within a method. Identifiers may be
of any length and may contain letters and digits drawn from the entire Unicode
character set. An identifier may not begin with a digit. In general, identifiers may
not contain punctuation characters. Exceptions include the ASCII underscore (_)
and dollar sign ($) as well as other Unicode currency symbols such as £ and ¥.

Currency symbols are intended for use in automatically gener-
ated source code, such as code produced by javac. By avoid-
ing the use of currency symbols in your own identifiers, you
don’t have to worry about collisions with automatically gener-
ated identifiers.

Formally, the characters allowed at the beginning of and within an identifier are
defined by the methods isJavaldentifierStart() and isJavaIldentifierPart()
of the class java.lang.Character.

The following are examples of legal identifiers:
i x1 theCurrentTime the_current_time B

Note in particular the example of a UTF-8 identifier—#&. This is the Kanji character
for “otter” and is perfectly legal as a Java identifier. The usage of non-ASCII identifi-
ers is unusual in programs predominantly written by Westerners, but is sometimes
seen.

Literals

Literals are values that appear directly in Java source code. They include integer and
floating-point numbers, single characters within single quotes, strings of characters
within double quotes, and the reserved words true, false, and null. For example,
the following are all literals:

1 1.0 '1' "one" true false null

The syntax for expressing numeric, character, and string literals is detailed in
“Primitive Data Types” on page 22.

Lexical Structure | 21

www.it-ebooks.info

-
]
<
o
(2]
<
3
-
o
X

http://www.it-ebooks.info/

Punctuation

Java also uses a number of punctuation characters as tokens. The Java Language
Specification divides these characters (somewhat arbitrarily) into two categories,
separators and operators. The twelve separators are:

¢y {3 01

.Q ::

The operators are:

+ - % / % & | " << >> >>>
+= = k= = %= &= |= A= <<= >>= >>>=
= == I= < <= > >=

! ~ && || =+ -- ? : ->

We'll see separators throughout the book, and will cover each operator individually
in “Expressions and Operators” on page 30.

Primitive Data Types

Java supports eight basic data types known as primitive types as described in Table
2-1. The primitive types include a Boolean type, a character type, four integer types,
and two floating-point types. The four integer types and the two floating-point types
differ in the number of bits that represent them and therefore in the range of num-
bers they can represent.

Table 2-1. Java primitive data types

Type Contains Default Size Range

boolean trueorfalse false 1hit NA

char Unicode character \u0ooO 16 bits \uOOOO to \UFFFF

byte Signed integer 0 8bits -128t0 127

short Signed integer 0 16 bits -32768 to 32767

int Signed integer 0 32 bits -2147483648 to 2147483647

long Signed integer 0 64 bits -9223372036854775808 to 9223372036854775807
float IEEE 754 floating point 0.0 32 bits 1.4E-45 to 3.4028235E+38

double IEEE 754 floating point 0.0 64 bits 4.9E-324 to 1.7976931348623157E+308

22 | Chapter 2:Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

The next section summarizes these primitive data types. In addition to these primi-
tive types, Java supports nonprimitive data types known as reference types, which
are introduced in “Reference Types” on page 84.

The boolean Type

The boolean type represents truth values. This type has only two possible values,
representing the two Boolean states: on or off, yes or no, true or false. Java reserves
the words true and false to represent these two Boolean values.

Programmers coming to Java from other languages (especially JavaScript) should
note that Java is much stricter about its Boolean values than other languages—in
particular, a boolean is neither an integral nor an object type, and incompatible val-
ues cannot be used in place of a boolean. In other words, you cannot take shortcuts
such as the following in Java:

Object o = new Object();
int 1 =1;

if (o) {
while(i) {
Y72
}
}

Instead, Java forces you to write cleaner code by explicitly stating the comparisons
you want:

if (o != null) {
while(i !'= 0) {
Y/
}
}

The char Type

The char type represents Unicode characters. Java has a slightly unique approach to
representing characters—javac accepts identifiers as UTF-8 (a variable-width
encoding) in input, but represents chars internally as a fixed-width encoding that is
16 bits wide.

These distinctions do not normally need to concern the developer, however. In most
cases, all that is required is to remember the rule that to include a character literal in
a Java program, simply place it between single quotes (apostrophes):

char c = 'A';

You can, of course, use any Unicode character as a character literal, and you can use
the \u Unicode escape sequence. In addition, Java supports a number of other
escape sequences that make it easy both to represent commonly used nonprinting
ASCII characters such as newline and to escape certain punctuation characters that
have special meaning in Java. For example:

Primitive Data Types | 23

www.it-ebooks.info

-
]
<
o
(2]
<
3
-
o
X

http://www.it-ebooks.info/

char tab = "\t', nul = '\000', aleph = '"\u05D0', slash = "\\';

Table 2-2 lists the escape characters that can be used in char literals. These charac-
ters can also be used in string literals, which are covered in the next section.

Table 2-2. Java escape characters

Escape Character value
sequence

\b Backspace

\t Horizontal tab
\n Newline

\f Form feed

\r (arriage return
\" Double quote

\' Single quote

\\ Backslash

\ xxx The Latin-1 character with the encoding xxx, where xxx is an octal (base 8) number

between 000 and 377. The forms \ xand \ xx are also legal, as in | @, but are not
recommended because they can cause difficulties in string constants where the escape
sequence is followed by a regular digit. This form is generally discouraged in favor of the
\UXXXX form.

\u xxxx The Unicode character with encoding xxxx, where xxxx is four hexadecimal digits.
Unicode escapes can appear anywhere in a Java program, not only in character and string
literals.

char values can be converted to and from the various integral types, and the char
data type is a 16-bit integral type. Unlike byte, short, int, and long, however, char
is an unsigned type. The Character class defines a number of useful static
methods for working with characters, including isDigit(), isJavalLetter(), isLo
werCase(), and toUpperCase().

The Java language and its char type were designed with Unicode in mind. The
Unicode standard is evolving, however, and each new version of Java adopts a new
version of Unicode. Java 7 uses Unicode 6.0 and Java 8 uses Unicode 6.2.

Recent releases of Unicode include characters whose encodings, or codepoints, do
not fit in 16 bits. These supplementary characters, which are mostly infrequently

24 | Chapter 2:Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

used Han (Chinese) ideographs, occupy 21 bits and cannot be represented in a sin-
gle char value. Instead, you must use an int value to hold the codepoint of a sup-
plementary character, or you must encode it into a so-called “surrogate pair” of two
char values.

Unless you commonly write programs that use Asian languages, you are unlikely to
encounter any supplementary characters. If you do anticipate having to process
characters that do not fit into a char, methods have been added to the Character,
String, and related classes for working with text using int codepoints.

String literals

In addition to the char type, Java also has a data type for working with strings of
text (usually simply called strings). The String type is a class, however, and is not
one of the primitive types of the language. Because strings are so commonly used,
though, Java does have a syntax for including string values literally in a program. A
String literal consists of arbitrary text within double quotes (as opposed to the sin-
gle quotes for char literals). For example:

"Hello, world"
"'This' is a string!"

String literals can contain any of the escape sequences that can appear as char liter-
als (see Table 2-2). Use the \" sequence to include a double quote within a String
literal. Because String is a reference type, string literals are described in more detail
later in this chapter in “Object Literals” on page 74. Chapter 9 contains more details
on some of the ways you can work with String objects in Java.

Integer Types

The integer types in Java are byte, short, int, and long. As shown in Table 2-1,
these four types differ only in the number of bits and, therefore, in the range of
numbers each type can represent. All integral types represent signed numbers; there
is no unsigned keyword as there is in C and C++.

Literals for each of these types are written exactly as you would expect: as a string of
decimal digits, optionally preceded by a minus sign.! Here are some legal integer
literals:

0

1

123
-42000

Integer literals can also be expressed in hexadecimal, binary, or octal notation. A lit-
eral that begins with 0x or 0X is taken as a hexadecimal number, using the letters A
to F (or a to f) as the additional digits required for base-16 numbers.

1 Technically, the minus sign is an operator that operates on the literal, but is not part of the literal
itself.

Primitive Data Types | 25

www.it-ebooks.info

-
1]
<
o
(2]
<
3
-
o
X

http://www.it-ebooks.info/

Integer binary literals start with 0b and may, of course, only feature the digits 1 or 0.
As binary literals can be very long, underscores are often used as part of a binary
literal. The underscore character is ignored whenever it is encountered in any
numerical literal—it’s allowed purely to help with readability of literals.

Java also supports octal (base-8) integer literals. These literals begin with a leading @
and cannot include the digits 8 or 9. They are not often used and should be avoided
unless needed. Legal hexadecimal, binary, and octal literals include:

oxff // Decimal 255, expressed in hexadecimal

0377 // The same number, expressed in octal (base 8)
0b0010_1111 // Decimal 47, expressed in binary

OxCAFEBABE // A magic number used to identify Java class files

Integer literals are 32-bit int values unless they end with the character L or 1, in
which case they are 64-bit long values:

1234 // An int value
1234L // A long value
OxffL // Another long value

Integer arithmetic in Java never produces an overflow or an underflow when you
exceed the range of a given integer type. Instead, numbers just wrap around. For
example:

byte bl = 127, b2 = 1; // Largest byte is 127
byte sum = (byte)(bl + b2); // Sum wraps to -128, the smallest byte

Neither the Java compiler nor the Java interpreter warns you in any way when this
occurs. When doing integer arithmetic, you simply must ensure that the type you
are using has a sufficient range for the purposes you intend. Integer division by zero
and modulo by zero are illegal and cause an ArithmeticException to be thrown.

Each integer type has a corresponding wrapper class: Byte, Short, Integer, and
Long. Each of these classes defines MIN_VALUE and MAX_VALUE constants that
describe the range of the type. The classes also define useful static methods, such as
Byte.parseByte() and Integer.parseInt(), for converting strings to
integer values.

Floating-Point Types

Real numbers in Java are represented by the float and double data types. As shown
in Table 2-1, float is a 32-bit, single-precision floating-point value, and double is a
64-bit, double-precision floating-point value. Both types adhere to the IEEE
754-1985 standard, which specifies both the format of the numbers and the behav-
ior of arithmetic for the numbers.

Floating-point values can be included literally in a Java program as an optional
string of digits, followed by a decimal point and another string of digits. Here are
some examples:

26 | Chapter 2:Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

123.45
0.0
.01

Floating-point literals can also use exponential, or scientific, notation, in which a
number is followed by the letter e or E (for exponent) and another number. This
second number represents the power of 10 by which the first number is multiplied.
For example:

1.2345E02 // 1.2345 * 1072 or 123.45
le-6 // 1 * 107-6 or 0.000001
6.02e23 // Avogadro's Number: 6.02 * 10723

Floating-point literals are double values by default. To include a float value literally
in a program, follow the number with f or F:

double d = 6.02E23;
float f = 6.02e23f;

Floating-point literals cannot be expressed in hexadecimal, binary, or octal notation.

Floating-Point Representations

Most real numbers, by their very nature, cannot be represented exactly in any finite
number of bits. Thus, it is important to remember that float and double values are
only approximations of the numbers they are meant to represent. A float is a 32-bit
approximation, which results in at least six significant decimal digits, and a double
is a 64-bit approximation, which results in at least 15 significant digits. In Chapter 9,
we will cover floating-point representations in more detail.

In addition to representing ordinary numbers, the float and double types can also
represent four special values: positive and negative infinity, zero, and NaN. The
infinity values result when a floating-point computation produces a value that
overflows the representable range of a float or double. When a floating-point com-
putation underflows the representable range of a float or a double, a zero value
results.

The Java floating-point types make a distinction between positive zero and negative
zero, depending on the direction from which the underflow occurred. In practice,
positive and negative zero behave pretty much the same. Finally, the last special
floating-point value is NaN, which stands for “Not-a-number” The NaN value
results when an illegal floating-point operation, such as 0.0/0.0, is performed. Here
are examples of statements that result in these special values:

double inf = 1.0/0.0; // Infinity

double neginf = -1.0/0.0; // Negative Infinity
double negzero = -1.0/inf; // Negative zero
double NaN = 0.0/0.0; // Not-a-number

Primitive Data Types | 27

www.it-ebooks.info

-
1]
<
)
(2]
<
3
-
o
X

http://www.it-ebooks.info/

Because the Java floating-point types can handle overflow to infinity and underflow
to zero and have a special NaN value, floating-point arithmetic never throws excep-
tions, even when performing illegal operations, like dividing zero by zero or taking
the square root of a negative number.

The float and double primitive types have corresponding classes, named Float
and Double. Each of these classes defines the following useful constants: MIN_VALUE,
MAX_VALUE, NEGATIVE_INFINITY, POSITIVE_INFINITY, and NaN

The infinite floating-point values behave as you would expect. Adding or subtract-
ing any finite value to or from infinity, for example, yields infinity. Negative zero
behaves almost identically to positive zero, and, in fact, the == equality operator
reports that negative zero is equal to positive zero. One way to distinguish negative
zero from positive, or regular, zero is to divide by it: 1.0/0.0 yields positive infinity,
but 1.0 divided by negative zero yields negative infinity. Finally, because NaN is Not-
a-number, the == operator says that it is not equal to any other number, including
itself! To check whether a float or double value is NaN, you must use the
Float.isNaN() and Double.isNaN() methods.

Primitive Type Conversions

Java allows conversions between integer values and floating-point values. In addi-
tion, because every character corresponds to a number in the Unicode encoding,
char values can be converted to and from the integer and floating-point types. In
fact, boolean is the only primitive type that cannot be converted to or from another
primitive type in Java.

There are two basic types of conversions. A widening conversion occurs when a
value of one type is converted to a wider type—one that has a larger range of legal
values. For example, Java performs widening conversions automatically when you
assign an int literal to a double variable or a char literal to an int variable.

Narrowing conversions are another matter, however. A narrowing conversion occurs
when a value is converted to a type that is not wider than it is. Narrowing conver-
sions are not always safe: it is reasonable to convert the integer value 13 to a byte,
for example, but it is not reasonable to convert 13,000 to a byte, because byte can
hold only numbers between -128 and 127. Because you can lose data in a narrowing
conversion, the Java compiler complains when you attempt any narrowing conver-
sion, even if the value being converted would in fact fit in the narrower range of the
specified type:

int 1 = 13;

byte b = i; // The compiler does not allow this
The one exception to this rule is that you can assign an integer literal (an int value)
to a byte or short variable if the literal falls within the range of the variable.

If you need to perform a narrowing conversion and are confident you can do so
without losing data or precision, you can force Java to perform the conversion using

28 | Chapter 2:Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

a language construct known as a cast. Perform a cast by placing the name of the
desired type in parentheses before the value to be converted. For example:

int 1 = 13;

byte b = (byte) i1; // Force the int to be converted to a byte

i = (int) 13.456; // Force this double literal to the int 13

Casts of primitive types are most often used to convert floating-point values to inte-
gers. When you do this, the fractional part of the floating-point value is simply trun-
cated (i.e., the floating-point value is rounded toward zero, not toward the nearest
integer). The static methods Math.round(), Math.floor(), and Math.ceil() per-
form other types of rounding.

The char type acts like an integer type in most ways, so a char value can be used
anywhere an int or long value is required. Recall, however, that the char type is
unsigned, so it behaves differently than the short type, even though both are 16 bits
wide:

short s = (short) Oxffff; // These bits represent the number -1

char c = "\uffff'; // The same bits, as a Unicode character
int 11 = s; // Converting the short to an int yields -1
int 12 = ¢; // Converting the char to an int yields 65535

Table 2-3 shows which primitive types can be converted to which other types and
how the conversion is performed. The letter N in the table means that the conver-
sion cannot be performed. The letter Y means that the conversion is a widening
conversion and is therefore performed automatically and implicitly by Java. The let-
ter C means that the conversion is a narrowing conversion and requires an explicit
cast.

Finally, the notation Y* means that the conversion is an automatic widening conver-
sion, but that some of the least significant digits of the value may be lost in the con-
version. This can happen when converting an int or long to a floating-point type—
see the table for details. The floating-point types have a larger range than the integer
types, so any int or long can be represented by a float or double. However, the
floating-point types are approximations of numbers and cannot always hold as
many significant digits as the integer types (see Chapter 9 for some more detail
about floating-point numbers).

Table 2-3. Java primitive type conversions

Convert to:

Convert from: boolean byte short char int long float double

boolean - N N N N N N N
byte N - Y C Y Y Y Y
short N C - C Y Y Y Y

Primitive DataTypes | 29

www.it-ebooks.info

-
]
<
o
(2]
<
3
-
o
X

http://www.it-ebooks.info/

Convert to:

Convert from: boolean byte short char int long float double

char N C C - Y ¥ Y Y
int N C C C - Y Y* Y
long N C C C C - Y* Y*
float N C C C c - Y
double N C C C c C -

Expressions and Operators

So far in this chapter, we've learned about the primitive types that Java programs can
manipulate and seen how to include primitive values as literals in a Java program.
We've also used variables as symbolic names that represent, or hold, values. These
literals and variables are the tokens out of which Java programs are built.

An expression is the next higher level of structure in a Java program. The Java inter-
preter evaluates an expression to compute its value. The very simplest expressions
are called primary expressions and consist of literals and variables. So, for example,
the following are all expressions:

1.7 // A floating-point literal
true // A Boolean literal
sum // A variable

When the Java interpreter evaluates a literal expression, the resulting value is the lit-
eral itself. When the interpreter evaluates a variable expression, the resulting value
is the value stored in the variable.

Primary expressions are not very interesting. More complex expressions are made
by using operators to combine primary expressions. For example, the following
expression uses the assignment operator to combine two primary expressions—a
variable and a floating-point literal—into an assignment expression:

sum = 1.7

But operators are used not only with primary expressions; they can also be used
with expressions at any level of complexity. The following are all legal expressions:

sum = 1 + 2 + 3 * 1.2 + (4 + 8)/3.0
sum/Math.sqrt(3.0 * 1.234)
(int)(sum + 33)

Operator Summary

The kinds of expressions you can write in a programming language depend entirely
on the set of operators available to you. Java has a wealth of operators, but to work

30 | Chapter2:Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

effectively with them, there are two important concepts that need to be understood:
precedence and associativity. These concepts—and the operators themselves—are
explained in more detail in the following sections.

Precedence

The P column of Table 2-4 specifies the precedence of each operator. Precedence
specifies the order in which operations are performed. Operations that have higher
precedence are performed before those with lower precedence. For example, con-
sider this expression:

a+b*c

The multiplication operator has higher precedence than the addition operator, so a
is added to the product of b and ¢, just as we expect from elementary mathematics.
Operator precedence can be thought of as a measure of how tightly operators bind
to their operands. The higher the number, the more tightly they bind.

Default operator precedence can be overridden through the use of parentheses that
explicitly specify the order of operations. The previous expression can be rewritten
to specify that the addition should be performed before the multiplication:

(a+b)*c

The default operator precedence in Java was chosen for compatibility with C; the
designers of C chose this precedence so that most expressions can be written natu-
rally without parentheses. There are only a few common Java idioms for which
parentheses are required. Examples include:

// Class cast combined with member access
((Integer) o).intValue();

// Assignment combined with comparison
while((line = in.readLine()) !'= null) { ... }

// Bitwise operators combined with comparison
if ((flags & (PUBLIC | PROTECTED)) !=0) { ... }

Associativity

Associativity is a property of operators that defines how to evaluate expressions that
would otherwise be ambiguous. This is particularly important when an expression
involves several operators that have the same precedence.

Most operators are left-to-right associative, which means that the operations are
performed from left to right. The assignment and unary operators, however, have
right-to-left associativity. The A column of Table 2-4 specifies the associativity of
each operator or group of operators. The value L means left to right, and R means
right to left.

Expressions and Operators | 31

www.it-ebooks.info

-
1]
<
o
(2]
<
3
-
o
X

http://www.it-ebooks.info/

The additive operators are all left-to-right associative, so the expression a+b-c is
evaluated from left to right: (a+b)-c. Unary operators and assignment operators are
evaluated from right to left. Consider this complex expression:

a=b+=c = -~d
This is evaluated as follows:
a=(b+= (c = -(~d)))

As with operator precedence, operator associativity establishes a default order of
evaluation for an expression. This default order can be overridden through the use
of parentheses. However, the default operator associativity in Java has been chosen
to yield a natural expression syntax, and you should rarely need to alter it.

Operator summary table

Table 2-4 summarizes the operators available in Java. The P and A columns of the
table specify the precedence and associativity of each group of related operators,
respectively. You should use this table as a quick reference for operators (especially
their precedence) when required.

Table 2-4. Java operators

P A Operator Operand type(s) Operation performed

16 L . object, member Object member access
[1] array, int Array element access
(args) method, arglist Method invocation
4+, - - variable Post-increment, post-decrement
15 R ++,-- variable Pre-increment, pre-decrement
+, - number Unary plus, unary minus
~ integer Bitwise complement
! boolean Boolean NOT
14 R new class, arglist Object creation
(type) type, any (ast (type conversion)
B L *%/% number, number Multiplication, division, remainder
12 L +- number, number Addition, subtraction

32 | Chapter2: Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

P A Operator Operand type(s) Operation performed

+ string, any String concatenation
MmN L << integer, integer Left shift
>> integer, integer Right shift with sign extension 5
s
>>> integer, integer Right shift with zero extension £
g
0 L <<= number, number Less than, less than or equal x
>, >= number, number Greater than, greater than or equal
instanceof reference, type Type comparison
9 L == primitive, primitive Equal (have identical values)

1= primitive, primitive Not equal (have different values)
== reference, reference Equal (refer to same object)

1= reference, reference Not equal (refer to different objects)

8 L & integer, integer Bitwise AND
& boolean, boolean Boolean AND
7 L~ integer, integer Bitwise XOR
" boolean, boolean Boolean XOR
6 L | integer, integer Bitwise OR

| boolean, boolean Boolean OR

5 L && boolean, boolean Conditional AND
4 L || boolean, boolean Conditional OR
3R ?2: boolean, any Conditional (ternary) operator
2 R = variable, any Assignment
*=, [=, %=, variable, any Assignment with operation

Expressions and Operators | 33

www.it-ebooks.info

http://www.it-ebooks.info/

P A Operator Operand type(s) Operation performed

=, -3, <<,
>>=, >>>=,
&=, A=, |=
1 R » arglist, method body lambda expression
Operand number and type

The fourth column of Table 2-4 specifies the number and type of the operands
expected by each operator. Some operators operate on only one operand; these are
called unary operators. For example, the unary minus operator changes the sign of a
single number:

-n // The unary minus operator

Most operators, however, are binary operators that operate on two operand values.
The - operator actually comes in both forms:

a-b // The subtraction operator is a binary operator

Java also defines one ternary operator, often called the conditional operator. It is like
an if statement inside an expression. Its three operands are separated by a question
mark and a colon; the second and third operands must be convertible to the same
type:

X >y ?x :y // Ternary expression; evaluates to larger of x and y

In addition to expecting a certain number of operands, each operator also expects
particular types of operands. The fourth column of the table lists the operand types.
Some of the codes used in that column require further explanation:

Number
An integer, floating-point value, or character (i.e., any primitive type except
boolean). Autounboxing (see “Boxing and Unboxing Conversions” on page 87)
means that the wrapper classes (such as Character, Integer, and Double) for
these types can be used in this context as well.

Integer
A byte, short, int, long, or char value (long values are not allowed for the
array access operator []). With autounboxing, Byte, Short, Integer, Long,
and Character values are also allowed.

Reference
An object or array.

34 | Chapter2: Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

Variable
A variable or anything else, such as an array element, to which a value can be
assigned.

Return type

Just as every operator expects its operands to be of specific types, each operator pro-
duces a value of a specific type. The arithmetic, increment and decrement, bitwise,
and shift operators return a double if at least one of the operands is a double. They
return a float if at least one of the operands is a float. They return a long if at
least one of the operands is a long. Otherwise, they return an int, even if both
operands are byte, short, or char types that are narrower than int.

The comparison, equality, and Boolean operators always return boolean values.
Each assignment operator returns whatever value it assigned, which is of a type
compatible with the variable on the left side of the expression. The conditional
operator returns the value of its second or third argument (which must both be of
the same type).

Side effects

Every operator computes a value based on one or more operand values. Some oper-
ators, however, have side effects in addition to their basic evaluation. If an expression
contains side effects, evaluating it changes the state of a Java program in such a way
that evaluating the expression again may yield a different result.

For example, the ++ increment operator has the side effect of incrementing a vari-
able. The expression ++a increments the variable a and returns the newly incremen-
ted value. If this expression is evaluated again, the value will be different. The vari-
ous assignment operators also have side effects. For example, the expression a*=2
can also be written as a=a*2. The value of the expression is the value of a multi-
plied by 2, but the expression has the side effect of storing that value back into a.

The method invocation operator () has side effects if the invoked method has side
effects. Some methods, such as Math.sqrt(), simply compute and return a value
without side effects of any kind. Typically, however, methods do have side effects.
Finally, the new operator has the profound side effect of creating a new object.

Order of evaluation

When the Java interpreter evaluates an expression, it performs the various opera-
tions in an order specified by the parentheses in the expression, the precedence of
the operators, and the associativity of the operators. Before any operation is per-
formed, however, the interpreter first evaluates the operands of the operator. (The
exceptions are the &&, ||, and ?: operators, which do not always evaluate all their
operands.) The interpreter always evaluates operands in order from left to right.
This matters if any of the operands are expressions that contain side effects. Con-
sider this code, for example:

Expressions and Operators | 35

www.it-ebooks.info

-
]
<
o
(2]
<
3
-
o
X

http://www.it-ebooks.info/

int a = 2;

int v = ++a + ++a * ++a;
Although the multiplication is performed before the addition, the operands of the +
operator are evaluated first. As the operands of ++ are both a+, these are evaluated
to 3 and 4, and so the expression evaluates to 3 + 4 * 5, or 23.

Arithmetic Operators

The arithmetic operators can be used with integers, floating-point numbers, and
even characters (i.e., they can be used with any primitive type other than boolean).
If either of the operands is a floating-point number, floating-point arithmetic is
used; otherwise, integer arithmetic is used. This matters because integer arithmetic
and floating-point arithmetic differ in the way division is performed and in the way
underflows and overflows are handled, for example. The arithmetic operators are:

Addition (+)
The + operator adds two numbers. As we'll see shortly, the + operator can also
be used to concatenate strings. If either operand of + is a string, the other one is
converted to a string as well. Be sure to use parentheses when you want to com-
bine addition with concatenation. For example:

System.out.println("Total: " + 3 + 4); // Prints "Total: 34", not 7!

Subtraction (-)
When the - operator is used as a binary operator, it subtracts its second
operand from its first. For example, 7-3 evaluates to 4. The - operator can also
perform unary negation.

Multiplication (*)
The * operator multiplies its two operands. For example, 7*3 evaluates to 21.

Division (/)
The / operator divides its first operand by its second. If both operands are inte-
gers, the result is an integer, and any remainder is lost. If either operand is a
floating-point value, however, the result is a floating-point value. When divid-
ing two integers, division by zero throws an ArithmeticException. For
floating-point calculations, however, division by zero simply yields an infinite

result or NaN:

7/3 // Evaluates to 2

7/3.0f // Evaluates to 2.333333f

7/0 // Throws an ArithmeticException
7/0.0 // Evaluates to positive infinity
0.0/0.0 // Evaluates to NaN

Modulo (%)
The % operator computes the first operand modulo the second operand (i.e., it
returns the remainder when the first operand is divided by the second operand
an integral number of times). For example, 7%3 is 1. The sign of the result is

36 | Chapter2: Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

the same as the sign of the first operand. While the modulo operator is typically
used with integer operands, it also works for floating-point values. For exam-
ple, 4.3%2.1 evaluates to 0.1. When operating with integers, trying to compute
a value modulo zero causes an ArithmeticException. When working with
floating-point values, anything modulo 0.0 evaluates to NaN, as does infinity
modulo anything.

Unary minus (-)
When the - operator is used as a unary operator—that is, before a single
operand—it performs unary negation. In other words, it converts a positive
value to an equivalently negative value, and vice versa.

String Concatenation Operator

In addition to adding numbers, the + operator (and the related += operator) also
concatenates, or joins, strings. If either of the operands to + is a string, the operator
converts the other operand to a string. For example:

// Prints "Quotient: 2.3333333"
System.out.println("Quotient: " + 7/3.0f);

As a result, you must be careful to put any addition expressions in parentheses
when combining them with string concatenation. If you do not, the addition opera-
tor is interpreted as a concatenation operator.

The Java interpreter has built-in string conversions for all primitive types. An object
is converted to a string by invoking its toString() method. Some classes define
custom toString() methods so that objects of that class can easily be converted to
strings in this way. An array is converted to a string by invoking the built-in
toString() method, which, unfortunately, does not return a useful string represen-
tation of the array contents.

Increment and Decrement Operators

The ++ operator increments its single operand, which must be a variable, an element
of an array, or a field of an object, by 1. The behavior of this operator depends on its
position relative to the operand. When used before the operand, where it is known
as the pre-increment operator, it increments the operand and evaluates to the incre-
mented value of that operand. When used after the operand, where it is known as
the post-increment operator, it increments its operand, but evaluates to the value of
that operand before it was incremented.

For example, the following code sets both 1 and j to 2:

i=1;
j = ++1;

But these lines set 1 to 2 and j to 1:

i=1;
j o= i++;

Expressions and Operators | 37

www.it-ebooks.info

-
]
<
o
(2]
<
3
-
o
X

http://www.it-ebooks.info/

Similarly, the -- operator decrements its single numeric operand, which must be a
variable, an element of an array, or a field of an object, by one. Like the ++ operator,
the behavior of -- depends on its position relative to the operand. When used
before the operand, it decrements the operand and returns the decremented value.
When used after the operand, it decrements the operand, but returns the undecre-
mented value.

The expressions x++ and x- - are equivalent to x=x+1 and x=x- 1, respectively, except
that when using the increment and decrement operators, x is only evaluated once. If
x is itself an expression with side effects, this makes a big difference. For example,
these two expressions are not equivalent:

a[i++]++; // Increments an element of an array
// Adds 1 to an array element and stores new value in another element
al[i++] = a[i++] + 1;

These operators, in both prefix and postfix forms, are most commonly used to
increment or decrement the counter that controls a loop.

Comparison Operators

The comparison operators consist of the equality operators that test values for
equality or inequality and the relational operators used with ordered types (num-
bers and characters) to test for greater than and less than relationships. Both types
of operators yield a boolean result, so they are typically used with if statements and
while and for loops to make branching and looping decisions. For example:

if (o !'= null) ...; // The not equals operator
while(i < a.length) ...; // The less than operator

Java provides the following equality operators:

Equals (==)
The == operator evaluates to true if its two operands are equal and false
otherwise. With primitive operands, it tests whether the operand values them-
selves are identical. For operands of reference types, however, it tests whether
the operands refer to the same object or array. In other words, it does not test
the equality of two distinct objects or arrays. In particular, note that you cannot
test two distinct strings for equality with this operator.

If == is used to compare two numeric or character operands that are not of the
same type, the narrower operand is converted to the type of the wider operand
before the comparison is done. For example, when comparing a short to a
float, the short is first converted to a float before the comparison is per-
formed. For floating-point numbers, the special negative zero value tests equal
to the regular, positive zero value. Also, the special NaN (Not-a-number) value
is not equal to any other number, including itself. To test whether a floating-
point value is NaN, use the Float.isNan() or Double.isNan() method.

38 | Chapter 2:Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

Not equals (!=)
The != operator is exactly the opposite of the == operator. It evaluates to true if
its two primitive operands have different values or if its two reference operands
refer to different objects or arrays. Otherwise, it evaluates to false.

The relational operators can be used with numbers and characters, but not with
boolean values, objects, or arrays because those types are not ordered. Java pro-
vides the following relational operators:

Less than (<)
Evaluates to true if the first operand is less than the second.

Less than or equal (<=)
Evaluates to true if the first operand is less than or equal to the second.

Greater than (>)
Evaluates to true if the first operand is greater than the second.

Greater than or equal (>=)
Evaluates to true if the first operand is greater than or equal to the second.

Boolean Operators

As we've just seen, the comparison operators compare their operands and yield a
boolean result, which is often used in branching and looping statements. In order
to make branching and looping decisions based on conditions more interesting
than a single comparison, you can use the Boolean (or logical) operators to combine
multiple comparison expressions into a single, more complex expression. The
Boolean operators require their operands to be boolean values and they evaluate to
boolean values. The operators are:

Conditional AND (&&)
This operator performs a Boolean AND operation on its operands. It evaluates
to true if and only if both its operands are true. If either or both operands are
false, it evaluates to false. For example:

if (x < 10 & y > 3) ... // If both comparisons are true

This operator (and all the Boolean operators except the unary ! operator) have
a lower precedence than the comparison operators. Thus, it is perfectly legal to
write a line of code like the one just shown. However, some programmers pre-
fer to use parentheses to make the order of evaluation explicit:

if ((x < 10) && (y > 3)) ...
You should use whichever style you find easier to read.

This operator is called a conditional AND because it conditionally evaluates its
second operand. If the first operand evaluates to false, the value of the expres-
sion is false, regardless of the value of the second operand. Therefore, to

Expressions and Operators | 39

www.it-ebooks.info

-
]
<
o
(2]
<
3
-
o
X

http://www.it-ebooks.info/

increase efficiency, the Java interpreter takes a shortcut and skips the second
operand. The second operand is not guaranteed to be evaluated, so you must
use caution when using this operator with expressions that have side effects.
On the other hand, the conditional nature of this operator allows us to write
Java expressions such as the following:

if (data !'= null & 1 < data.length && data[i] != -1)

The second and third comparisons in this expression would cause errors if the
first or second comparisons evaluated to false. Fortunately, we don’t have to
worry about this because of the conditional behavior of the && operator.

Conditional OR (] |)
This operator performs a Boolean OR operation on its two boolean operands.
It evaluates to true if either or both of its operands are true. If both operands
are false, it evaluates to false. Like the && operator, | | does not always evalu-
ate its second operand. If the first operand evaluates to true, the value of the
expression is true, regardless of the value of the second operand. Thus, the
operator simply skips the second operand in that case.

Boolean NOT (')
This unary operator changes the boolean value of its operand. If applied to a
true value, it evaluates to false, and if applied to a false value, it evaluates to
true. It is useful in expressions like these:

if (!found) ... // found is a boolean declared somewhere
while (!'c.isEmpty()) ... // The isEmpty() method returns a boolean

Because ! is a unary operator, it has a high precedence and often must be used
with parentheses:

if (I(x >y &y > 2z))

Boolean AND (&)
When used with boolean operands, the & operator behaves like the && operator,
except that it always evaluates both operands, regardless of the value of the first
operand. This operator is almost always used as a bitwise operator with integer
operands, however, and many Java programmers would not even recognize its
use with boolean operands as legal Java code.

Boolean OR (])
This operator performs a Boolean OR operation on its two boolean operands.
It is like the || operator, except that it always evaluates both operands, even if
the first one is true. The | operator is almost always used as a bitwise operator
on integer operands; its use with boolean operands is very rare.

Boolean XOR (»)
When used with boolean operands, this operator computes the exclusive OR
(XOR) of its operands. It evaluates to true if exactly one of the two operands is

40 | Chapter 2:Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

true. In other words, it evaluates to false if both operands are false or if both
operands are true. Unlike the && and | | operators, this one must always evalu-
ate both operands. The » operator is much more commonly used as a bitwise
operator on integer operands. With boolean operands, this operator is equiva-
lent to the != operator.

Bitwise and Shift Operators

The bitwise and shift operators are low-level operators that manipulate the individ-
ual bits that make up an integer value. The bitwise operators are not commonly
used in modern Java except for low-level work (e.g., network programming). They
are used for testing and setting individual flag bits in a value. In order to understand
their behavior, you must understand binary (base-2) numbers and the two's comple-
ment format used to represent negative integers.

You cannot use these operators with floating-point, boolean, array, or object
operands. When used with boolean operands, the &, |, and * operators perform a
different operation, as described in the previous section.

If either of the arguments to a bitwise operator is a long, the result is a long. Other-
wise, the result is an int. If the left operand of a shift operator is a long, the result is
a long; otherwise, the result is an int. The operators are:

Bitwise complement (~)
The unary ~ operator is known as the bitwise complement, or bitwise NOT,
operator. It inverts each bit of its single operand, converting 1s to 0s and 0s to
Is. For example:

byte b = ~12; // ~00001100 = => 11110011 or -13 decimal
flags = flags & ~f; // Clear flag f in a set of flags

Bitwise AND (&)
This operator combines its two integer operands by performing a Boolean
AND operation on their individual bits. The result has a bit set only if the cor-
responding bit is set in both operands. For example:

10 & 7 // 00001010 & 00EOO111 = => 0OOOOO10 or 2
if ((flags & f) != 0) // Test whether flag f is set

When used with boolean operands, & is the infrequently used Boolean AND
operator described earlier.

Bitwise OR (|)
This operator combines its two integer operands by performing a Boolean OR
operation on their individual bits. The result has a bit set if the corresponding
bit is set in either or both of the operands. It has a zero bit only where both
corresponding operand bits are zero. For example:

10 | 7 // 000010160 | 00PEO111 = => EOEO1111 or 15
flags = flags | f; // Set flag f

Expressions and Operators | 41

www.it-ebooks.info

-
]
<
o
(2]
<
3
-
o
X

http://www.it-ebooks.info/

When used with boolean operands, | is the infrequently used Boolean OR
operator described earlier.

Bitwise XOR (*)

This operator combines its two integer operands by performing a Boolean
XOR (exclusive OR) operation on their individual bits. The result has a bit set
if the corresponding bits in the two operands are different. If the correspond-
ing operand bits are both 1s or both 0s, the result bit is a 0. For example:

10 ~7 // 00001010 * 00POOO111 = => 00001101 or 13

When used with boolean operands, ~ is the seldom used Boolean XOR
operator.

Left shift (<<)

The << operator shifts the bits of the left operand left by the number of places
specified by the right operand. High-order bits of the left operand are lost, and
zero bits are shifted in from the right. Shifting an integer left by n places is
equivalent to multiplying that number by 2". For example:

10 << 1 // 00001010 << 1 = 00010100 = 20 = 10*2

7 << 3 // 00000111 << 3 = 00111000 = 56 = 7*8
-1 << 2 // OXFFFFFFFF << 2 = OXFFFFFFFC = -4 = -1*4

If the left operand is a long, the right operand should be between 0 and 63.
Otherwise, the left operand is taken to be an int, and the right operand should
be between 0 and 31.

Signed right shift (>>)

The >> operator shifts the bits of the left operand to the right by the number of
places specified by the right operand. The low-order bits of the left operand are
shifted away and are lost. The high-order bits shifted in are the same as the
original high-order bit of the left operand. In other words, if the left operand is
positive, Os are shifted into the high-order bits. If the left operand is negative,
1s are shifted in instead. This technique is known as sign extension; it is used to
preserve the sign of the left operand. For example:

10 >> 1 // 00001010 >> 1 = 00000101 = 5 = 10/2
27 >> 3 // 00011011 >> 3 = 00000011 = 3 = 27/8
=50 >> 2 // 11001110 >> 2 = 11110011 = -13 I= -50/4

If the left operand is positive and the right operand is n, the >> operator is the
same as integer division by 2.

Unsigned right shift (>>>)

This operator is like the >> operator, except that it always shifts zeros into the
high-order bits of the result, regardless of the sign of the left-hand operand.
This technique is called zero extension; it is appropriate when the left operand
is being treated as an unsigned value (despite the fact that Java integer types are
all signed). These are examples:

)

| Chapter 2: Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

Oxff >>> 4 // 11111111 >>> 4 = 00001111 = 15 = 255/16
-50 >>> 2 // OXFFFFFFCE >>> 2 = Ox3FFFFFF3 = 1073741811

Assignment Operators

The assignment operators store, or assign, a value into some kind of variable. The
left operand must evaluate to an appropriate local variable, array element, or object
field. The right side can be any value of a type compatible with the variable. An
assignment expression evaluates to the value that is assigned to the variable. More
importantly, however, the expression has the side effect of actually performing the
assignment. Unlike all other binary operators, the assignment operators are right-
associative, which means that the assignments in a=b=c are performed right to left,
as follows: a=(b=c).

The basic assignment operator is =. Do not confuse it with the equality operator, ==.
In order to keep these two operators distinct, we recommend that you read = as “is
assigned the value”

In addition to this simple assignment operator, Java also defines 11 other operators
that combine assignment with the 5 arithmetic operators and the 6 bitwise and shift
operators. For example, the += operator reads the value of the left variable, adds the
value of the right operand to it, stores the sum back into the left variable as a side
effect, and returns the sum as the value of the expression. Thus, the expression x+=2
is almost the same as x=x+2. The difference between these two expressions is that
when you use the += operator, the left operand is evaluated only once. This makes a
difference when that operand has a side effect. Consider the following two expres-
sions, which are not equivalent:

a[i++] += 2;
afi++] = a[i++] + 25

The general form of these combination assignment operators is:
var op= value

This is equivalent (unless there are side effects in var) to:
var = var op value

The available operators are:

+= -= *= /= %= // Arithmetic operators plus assignment
&= = A= // Bitwise operators plus assignment
<<= >>= >>>= // Shift operators plus assignment

The most commonly used operators are += and -=, although &= and |= can also be
useful when working with boolean flags. For example:

i += 2; // Increment a loop counter by 2
c -=5; // Decrement a counter by 5

Expressions and Operators | 43

www.it-ebooks.info

-
]
<
o
(2]
<
3
-
o
X

http://www.it-ebooks.info/

flags |= f; // Set a flag f in an integer set of flags
flags &= ~f; // Clear a flag f in an integer set of flags

The Conditional Operator

The conditional operator ?: is a somewhat obscure ternary (three-operand) opera-
tor inherited from C. It allows you to embed a conditional within an expression.
You can think of it as the operator version of the if/else statement. The first and
second operands of the conditional operator are separated by a question mark (?)
while the second and third operands are separated by a colon (:). The first operand
must evaluate to a boolean value. The second and third operands can be of any
type, but they must be convertible to the same type.

The conditional operator starts by evaluating its first operand. If it is true, the oper-
ator evaluates its second operand and uses that as the value of the expression. On
the other hand, if the first operand is false, the conditional operator evaluates and
returns its third operand. The conditional operator never evaluates both its second
and third operand, so be careful when using expressions with side effects with this
operator. Examples of this operator are:

int max = (X >y) 72 X :y;
String name = (name != null) ? name : "unknown";

Note that the ?: operator has lower precedence than all other operators except the
assignment operators, so parentheses are not usually necessary around the operands
of this operator. Many programmers find conditional expressions easier to read if
the first operand is placed within parentheses, however. This is especially true
because the conditional if statement always has its conditional expression written
within parentheses.

The instanceof Operator

The instanceof operator is intimately bound up with objects and the operation of
the Java type system. If this is your first look at Java, it may be preferable to skim
this definition and return to this section after you have a decent grasp of Javas
objects.

instanceof requires an object or array value as its left operand and the name of a
reference type as its right operand. It evaluates to true if the object or array is an
instance of the specified type; it returns false otherwise. If the left operand is null,
instanceof always evaluates to false. If an instanceof expression evaluates to
true, it means that you can safely cast and assign the left operand to a variable of
the type of the right operand.

The instanceof operator can be used only with reference types and objects, not
primitive types and values. Examples of instanceof are:

// True: all strings are instances of String
"string" instanceof String
// True: strings are also instances of Object

44 | Chapter 2:Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

instanceof Object
// False: null is never an instance of anything
null instanceof String

Object o = new int[] {1,2,3};

o instanceof int[] // True: the array value is an int array

o instanceof byte[] // False: the array value is not a byte array
o instanceof Object // True: all arrays are instances of Object

// Use instanceof to make sure that it is safe to cast an object
if (object instanceof Point) {
Point p = (Point) object;

-
]
<
o
(2]
<
3
-
o
X

}
Special Operators

Java has six language constructs that are sometimes considered operators and some-
times considered simply part of the basic language syntax. These “operators” were
included in Table 2-4 in order to show their precedence relative to the other true
operators. The use of these language constructs is detailed elsewhere in this book,
but is described briefly here so that you can recognize them in code examples:

Object member access (.)
An object is a collection of data and methods that operate on that data; the data
fields and methods of an object are called its members. The dot (.) operator
accesses these members. If o0 is an expression that evaluates to an object refer-
ence, and f is the name of a field of the object, o. f evaluates to the value con-
tained in that field. If m is the name of a method, o.m refers to that method and
allows it to be invoked using the () operator shown later.

Array element access ([1)
An array is a numbered list of values. Each element of an array can be referred
to by its number, or index. The [] operator allows you to refer to the individ-
ual elements of an array. If a is an array, and 1 is an expression that evaluates to
an int, a[i] refers to one of the elements of a. Unlike other operators that
work with integer values, this operator restricts array index values to be of type
int or narrower.

Method invocation (())
A method is a named collection of Java code that can be run, or invoked, by fol-
lowing the name of the method with zero or more comma-separated expres-
sions contained within parentheses. The values of these expressions are the
arguments to the method. The method processes the arguments and optionally
returns a value that becomes the value of the method invocation expression. If
o.m is a method that expects no arguments, the method can be invoked with
o.m(). If the method expects three arguments, for example, it can be invoked
with an expression such as o.m(x,y,z). Before the Java interpreter invokes a
method, it evaluates each of the arguments to be passed to the method. These

Expressions and Operators | 45

www.it-ebooks.info

http://www.it-ebooks.info/

expressions are guaranteed to be evaluated in order from left to right (which
matters if any of the arguments have side effects).

Lambda expression (=)

A lambda expression is an anonymous collection of executable Java code, essen-
tially a method body. It consists of a method argument list (zero or more
comma-separated expressions contained within parentheses) followed by the
lambda arrow operator followed by a block of Java code. If the block of code
comprises just a single statement, then the usual curly braces to denote block
boundaries can be omitted.

Object creation (new)

In Java, objects (and arrays) are created with the new operator, which is fol-
lowed by the type of the object to be created and a parenthesized list of argu-
ments to be passed to the object constructor. A constructor is a special block of
code that initializes a newly created object, so the object creation syntax is simi-
lar to the Java method invocation syntax. For example:

new ArraylList();
new Point(1,2)

Type conversion or casting (())

As we've already seen, parentheses can also be used as an operator to perform
narrowing type conversions, or casts. The first operand of this operator is the
type to be converted to; it is placed between the parentheses. The second
operand is the value to be converted; it follows the parentheses. For example:

(byte) 28 // An integer literal cast to a byte type
(int) (x + 3.14f) // A floating-point sum value cast to an integer
(String)h.get(k) // A generic object cast to a string

Statements

A statement is a basic unit of execution in the Java language—it expresses a single
piece of intent by the programmer. Unlike expressions, Java statements do not have
a value. Statements also typically contain expressions and operators (especially
assignment operators) and are frequently executed for the side effects that they
cause.

Many of the statements defined by Java are flow-control statements, such as condi-
tionals and loops, that can alter the default, linear order of execution in well-defined
ways. Table 2-5 summarizes the statements defined by Java.

46

Chapter 2: Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

Table 2-5. Java statements

Statement Purpose Syntax

expression side effects var = expr ; expr ++; method (); new Type ();
compound group statements { statements }

empty do nothing H

labeled name a statement label: statement

variable declare avariable [final] type name [= value] [, name [= value]] ..;
if conditional if (expr) statement[else statement]

switch conditional switch (expr) {[caseexpr:statements] ..

[default: statements]}

while loop while (expr) statement

do loop do statementwhile (expr);

for simplified loop for (init; test; increment) statement

foreach collection iteration for (variable: iterable) statement

break exit block break [label] ;

continue restart loop continue [label] ;

return end method return [expr] ;

synchronized (itical section synchronized (expr) { statements}

throw throw exception throw expr ;

try handle exception try { statements} [catch (typename) { state

ments}] ...[finally { statements}]

assert verify invariant assert invariant [:error];

Expression Statements

As we saw earlier in the chapter, certain types of Java expressions have side effects.
In other words, they do not simply evaluate to some value; they also change the

Statements | 47

www.it-ebooks.info

-
]
<
o
(2]
<
3
-
o
X

http://www.it-ebooks.info/

program state in some way. Any expression with side effects can be used as a state-
ment simply by following it with a semicolon. The legal types of expression state-
ments are assignments, increments and decrements, method calls, and object cre-
ation. For example:

a=1; // Assignment

X *= 2; // Assignment with operation
i++; // Post-increment

--C; // Pre-decrement

System.out.println("statement"); // Method invocation

Compound Statements

A compound statement is any number and kind of statements grouped together
within curly braces. You can use a compound statement anywhere a statement is
required by Java syntax:

for(int 1 = 0; 1 < 10; i++) {

a[i]++; // Body of this loop is a compound statement.
b[i]--; // It consists of two expression statements
} // within curly braces.
The Empty Statement

An empty statement in Java is written as a single semicolon. The empty statement
doesn’t do anything, but the syntax is occasionally useful. For example, you can use
it to indicate an empty loop body in a for loop:

for(int 1 = 0; 1 < 10; a[i++]++) // Increment array elements
/* empty */; // Loop body is empty statement

Labeled Statements

A labeled statement is simply a statement that has been given a name by prepending
an identifier and a colon to it. Labels are used by the break and continue state-
ments. For example:

for(int r = 0; r < rows.length; r++) { // Labeled loop
for(int c = 0; c < columns.length; c++) { // Another one
break rowLoop; // Use a label

3
}

Local Variable Declaration Statements

A local variable, often simply called a variable, is a symbolic name for a location to
store a value that is defined within a method or compound statement. All variables
must be declared before they can be used; this is done with a variable declaration
statement. Because Java is a statically typed language, a variable declaration specifies
the type of the variable, and only values of that type can be stored in the variable.

In its simplest form, a variable declaration specifies a variable’s type and name:

48 | Chapter 2:Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

int counter;
String s;

A variable declaration can also include an initializer: an expression that specifies an
initial value for the variable. For example:

int 1 = 0;
String s = readLine();
int[] data = {x+1, x+2, x+3}; // Array initializers are discussed later

The Java compiler does not allow you to use a local variable that has not been ini-
tialized, so it is usually convenient to combine variable declaration and initialization
into a single statement. The initializer expression need not be a literal value or a
constant expression that can be evaluated by the compiler; it can be an arbitrarily
complex expression whose value is computed when the program is run.

A single variable declaration statement can declare and initialize more than one
variable, but all variables must be of the same type. Variable names and optional ini-
tializers are separated from each other with commas:

int 1, j, k;
float x = 1.0, y = 1.0;
String question = "Really Quit?", response;

Variable declaration statements can begin with the final keyword. This modifier
specifies that once an initial value is specified for the variable, that value is never
allowed to change:

final String greeting = getlLocallLanguageGreeting();

We will have more to say about the final keyword later on, especially when talking
about the immutable style of programming.

C programmers should note that Java variable declaration statements can appear
anywhere in Java code; they are not restricted to the beginning of a method or block
of code. Local variable declarations can also be integrated with the initialize portion
of a for loop, as we'll discuss shortly.

Local variables can be used only within the method or block of code in which they
are defined. This is called their scope or lexical scope:

void method() { // A method definition
int 1 = 0; // Declare variable 1
while (1 < 10) { // 1 is in scope here
int j = 0; // Declare j; the scope of j begins here
1++; // 1 is in scope here; increment it
} // j is no longer in scope;
System.out.println(i); // i is still in scope here
} // The scope of i ends here

Statements | 49

www.it-ebooks.info

-
]
<
o
(2]
<
3
-
o
X

http://www.it-ebooks.info/

The if/else Statement

The if statement is a fundamental control statement that allows Java to make deci-
sions or, more precisely, to execute statements conditionally. The if statement has
an associated expression and statement. If the expression evaluates to true, the
interpreter executes the statement. If the expression evaluates to false, the inter-
preter skips the statement.

Java allows the expression to be of the wrapper type Boolean
instead of the primitive type boolean. In this case, the wrap-
per object is automatically unboxed.

Here is an example if statement:

if (username == null) // If username is null,
username = "John Doe"; // use a default value

Although they look extraneous, the parentheses around the expression are a
required part of the syntax for the i1f statement. As we already saw, a block of state-
ments enclosed in curly braces is itself a statement, so we can write if statements
that look like this as well:

if ((address == null) || (address.equals(""))) {
address = "[undefined]";
System.out.println("WARNING: no address specified.");
}

An 1f statement can include an optional else keyword that is followed by a second
statement. In this form of the statement, the expression is evaluated, and, if it is
true, the first statement is executed. Otherwise, the second statement is executed.
For example:

if (username != null)
System.out.println("Hello
else {
username = askQuestion("What is your name?");
System.out.println("Hello " + username + ". Welcome!");

+ username);

}

When you use nested i1f/else statements, some caution is required to ensure that
the else clause goes with the appropriate if statement. Consider the following
lines:

if (1 == 3)
if (§ == k)
System.out.println("i equals k");
else

System.out.println("i doesn't equal j"); // WRONG!!

50 | Chapter2:Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

In this example, the inner if statement forms the single statement allowed by the
syntax of the outer if statement. Unfortunately, it is not clear (except from the hint
given by the indentation) which if the else goes with. And in this example, the
indentation hint is wrong. The rule is that an else clause like this is associated with
the nearest 1f statement. Properly indented, this code looks like this:
if (1 ==17)
if (J == k)
System.out.println("i equals k");

else
System.out.println("i doesn't equal j"); // WRONG!!

This is legal code, but it is clearly not what the programmer had in mind. When
working with nested if statements, you should use curly braces to make your code
easier to read. Here is a better way to write the code:

if (1==13){
if (§ == k)
System.out.println("i equals k");
}
else {
System.out.println("i doesn't equal j");
}

The else if clause

The if/else statement is useful for testing a condition and choosing between two
statements or blocks of code to execute. But what about when you need to choose
between several blocks of code? This is typically done with an else if clause, which
is not really new syntax, but a common idiomatic usage of the standard if/else
statement. It looks like this:

if (n==1) {

// Execute code block #1
}
else if (n == 2) {

// Execute code block #2
}
else if (n == 3) {

// Execute code block #3

}
else {

// If all else fails, execute block #4
}

There is nothing special about this code. It is just a series of if statements, where
each if is part of the else clause of the previous statement. Using the else if idiom
is preferable to, and more legible than, writing these statements out in their fully
nested form:

if (n == 1) {
// Execute code block #1

Statements | 51

www.it-ebooks.info

-
1]
<
o
(2]
<
3
-
o
X

http://www.it-ebooks.info/

}
else {
if (n == 2) {
// Execute code block #2
}

else {
if (n == 3) {
// Execute code block #3
}
else {
// If all else fails, execute block #4
}
}
}

The switch Statement

An if statement causes a branch in the flow of a program’s execution. You can use
multiple if statements, as shown in the previous section, to perform a multiway
branch. This is not always the best solution, however, especially when all of the
branches depend on the value of a single variable. In this case, it is inefficient to
repeatedly check the value of the same variable in multiple 1f statements.

A better solution is to use a switch statement, which is inherited from the C pro-
gramming language. Although the syntax of this statement is not nearly as elegant
as other parts of Java, the brute practicality of the construct makes it worthwhile.

A switch statement starts with an expression whose type is an
int, short, char, byte (or their wrapper type), String, or an
enum (see Chapter 4 for more on enumerated types).

This expression is followed by a block of code in curly braces that contains various
entry points that correspond to possible values for the expression. For example, the
following switch statement is equivalent to the repeated i1f and else/if statements
shown in the previous section:

switch(n) {

case 1: // Start here if n ==
// Execute code block #1
break; // Stop here

case 2: // Start here if n == 2
// Execute code block #2
break; // Stop here

case 3: // Start here if n ==
// Execute code block #3
break; // Stop here

default: // If all else fails...

// Execute code block #4

52 | Chapter2:Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

break; // Stop here
}

As you can see from the example, the various entry points into a switch statement
are labeled either with the keyword case, followed by an integer value and a colon,
or with the special default keyword, followed by a colon. When a switch statement
executes, the interpreter computes the value of the expression in parentheses and
then looks for a case label that matches that value. If it finds one, the interpreter
starts executing the block of code at the first statement following the case label. If it
does not find a case label with a matching value, the interpreter starts execution at
the first statement following a special-case default: label. Or, if there is no default:
label, the interpreter skips the body of the switch statement altogether.

Note the use of the break keyword at the end of each case in the previous code. The
break statement is described later in this chapter, but, in this case, it causes the
interpreter to exit the body of the switch statement. The case clauses in a switch
statement specify only the starting point of the desired code. The individual cases
are not independent blocks of code, and they do not have any implicit ending point.
Therefore, you must explicitly specify the end of each case with a break or related
statement. In the absence of break statements, a switch statement begins executing
code at the first statement after the matching case label and continues executing
statements until it reaches the end of the block. On rare occasions, it is useful to
write code like this that falls through from one case label to the next, but 99% of the
time you should be careful to end every case and default section with a statement
that causes the switch statement to stop executing. Normally you use a break state-
ment, but return and throw also work.

A switch statement can have more than one case clause labeling the same state-
ment. Consider the switch statement in the following method:

boolean parseYesOrNoResponse(char response) {
switch(response) {

case 'y':

case 'Y': return true;
case 'n':

case 'N': return false;
default:

throw new IllegalArgumentException("Response must be Y or N");

}

The switch statement and its case labels have some important restrictions. First,
the expression associated with a switch statement must have an appropriate type—
either byte, char, short, int (or their wrappers), or an enum type or a String. The
floating-point and boolean types are not supported, and neither is long, even
though long is an integer type. Second, the value associated with each case label
must be a constant value or a constant expression the compiler can evaluate. A case
label cannot contain a runtime expression involving variables or method calls, for
example. Third, the case label values must be within the range of the data type used

Statements | 53

www.it-ebooks.info

-
]
<
o
(2]
<
3
-
o
X

http://www.it-ebooks.info/

for the switch expression. And finally, it is not legal to have two or more case labels
with the same value or more than one default label.

The while Statement

The while statement is a basic statement that allows Java to perform repetitive
actions—or, to put it another way;, it is one of Java’s primary looping constructs. It has
the following syntax:

while (expression)
statement

The while statement works by first evaluating the expression, which must result in
a boolean or Boolean value. If the value is false, the interpreter skips the state
ment associated with the loop and moves to the next statement in the program. If it
is true, however, the statement that forms the body of the loop is executed, and the
expression is reevaluated. Again, if the value of expression is false, the inter-
preter moves on to the next statement in the program; otherwise, it executes the
statement again. This cycle continues while the expression remains true (i.e.,
until it evaluates to false), at which point the while statement ends, and the inter-
preter moves on to the next statement. You can create an infinite loop with the syn-
tax while(true).

Here is an example while loop that prints the numbers 0 to 9:

int count = 0;

while (count < 10) {
System.out.println(count);
count++;

}

As you can see, the variable count starts off at 0 in this example and is incremented
each time the body of the loop runs. Once the loop has executed 10 times, the
expression becomes false (i.e., count is no longer less than 10), the while state-
ment finishes, and the Java interpreter can move to the next statement in the pro-
gram. Most loops have a counter variable like count. The variable names 1, j, and k
are commonly used as loop counters, although you should use more descriptive
names if it makes your code easier to understand.

The do Statement

A do loop is much like a while loop, except that the loop expression is tested at the
bottom of the loop rather than at the top. This means that the body of the loop is
always executed at least once. The syntax is:

do
statement
while (expression);

Notice a couple of differences between the do loop and the more ordinary while
loop. First, the do loop requires both the do keyword to mark the beginning of the

54 | Chapter2: Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

loop and the while keyword to mark the end and introduce the loop condition.
Also, unlike the while loop, the do loop is terminated with a semicolon. This is
because the do loop ends with the loop condition rather than simply ending with a
curly brace that marks the end of the loop body. The following do loop prints the
same output as the while loop just discussed:

int count = 0;

do {
System.out.println(count);
count++;

} while(count < 10);

The do loop is much less commonly used than its while cousin because, in practice,
it is unusual to encounter a situation where you are sure you always want a loop to
execute at least once.

The for Statement

The for statement provides a looping construct that is often more convenient than
the while and do loops. The for statement takes advantage of a common looping
pattern. Most loops have a counter, or state variable of some kind, that is initialized
before the loop starts, tested to determine whether to execute the loop body, and
then incremented or updated somehow at the end of the loop body before the test
expression is evaluated again. The initialization, test, and update steps are the three
crucial manipulations of a loop variable, and the for statement makes these three
steps an explicit part of the loop syntax:

for(initialize; test; update) {
statement

}

This for loop is basically equivalent to the following while loop:

initialize;

while (test) {
statement;
update;

}

Placing the initialize, test, and update expressions at the top of a for loop
makes it especially easy to understand what the loop is doing, and it prevents mis-
takes such as forgetting to initialize or update the loop variable. The interpreter dis-
cards the values of the initialize and update expressions, so to be useful, these
expressions must have side effects. initialize is typically an assignment expression
while update is usually an increment, decrement, or some other assignment.

The following for loop prints the numbers 0 to 9, just as the previous while and do
loops have done:

Statements | 55

www.it-ebooks.info

—
1]
<
o
(2]
<
3
-
o
X

http://www.it-ebooks.info/

int count;
for(count = 0 ; count < 10 ; count++)
System.out.println(count);

Notice how this syntax places all the important information about the loop variable
on a single line, making it very clear how the loop executes. Placing the update
expression in the for statement itself also simplifies the body of the loop to a single
statement; we don’t even need to use curly braces to produce a statement block.

The for loop supports some additional syntax that makes it even more convenient
to use. Because many loops use their loop variables only within the loop, the for
loop allows the initialize expression to be a full variable declaration, so that the
variable is scoped to the body of the loop and is not visible outside of it. For
example:

for(int count = 0 ; count < 10 ; count++)
System.out.println(count);

Furthermore, the for loop syntax does not restrict you to writing loops that use
only a single variable. Both the initialize and update expressions of a for loop
can use a comma to separate multiple initializations and update expressions. For
example:

for(int 1 =0, j =10 ; 1 <10 ; 1++, j--)
sum += 1 * j;
Even though all the examples so far have counted numbers, for loops are not

restricted to loops that count numbers. For example, you might use a for loop to
iterate through the elements of a linked list:

for(Node n = listHead; n != null; n = n.nextNode())
process(n);

The initialize, test, and update expressions of a for loop are all optional; only
the semicolons that separate the expressions are required. If the test expression is
omitted, it is assumed to be true. Thus, you can write an infinite loop as for(; ;).

The foreach Statement

Java’s for loop works well for primitive types, but it is needlessly clunky for han-
dling collections of objects. Instead, an alternative syntax known as a foreach loop is
used for handling collections of objects that need to be looped over.

The foreach loop uses the keyword for followed by an opening parenthesis, a vari-
able declaration (without initializer), a colon, an expression, a closing parenthesis,
and finally the statement (or block) that forms the body of the loop:

for(declaration : expression)
statement

Despite its name, the foreach loop does not have a keyword foreach—instead, it is
common to read the colon as “in”—as in “foreach name in studentNames.

56 | Chapter2: Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

For the while, do, and for loops, we've shown an example that prints 10 numbers.
The foreach loop can do this too, but it needs a collection to iterate over. In order to
loop 10 times (to print out 10 numbers), we need an array or other collection with
10 elements. Here’s code we can use:

// These are the numbers we want to print
int[] primes = new int[] { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };
// This is the loop that prints them
for(int n : primes)
System.out.println(n);

What foreach cannot do

Foreach is different from the while, for, or do loops, because it hides the loop
counter or Iterator from you. This is a very powerful idea, as we'll see when we
discuss lambda expressions, but there are some algorithms that cannot be expressed
very naturally with a foreach loop.

For example, suppose you want to print the elements of an array as a comma-
separated list. To do this, you need to print a comma after every element of the array
except the last, or equivalently, before every element of the array except the first.
With a traditional for loop, the code might look like this:

for(int 1 = 0; 1 < words.length; i++) {
if (1 > 0) System.out.print(", ");
System.out.print(words[i]);

}

This is a very straightforward task, but you simply cannot do it with foreach. The
problem is that the foreach loop doesn’t give you a loop counter or any other way to
tell if you're on the first iteration, the last iteration, or somewhere in between.

A similar issue exists when using foreach to iterate through
the elements of a collection. Just as a foreach loop over an
array has no way to obtain the array index of the current ele-
ment, a foreach loop over a collection has no way to obtain the
Iterator object that is being used to itemize the elements of
the collection.

Here are some other things you cannot do with a foreach style loop:

o Iterate backward through the elements of an array or List.

« Use a single loop counter to access the same-numbered elements of two dis-
tinct arrays.

o Iterate through the elements of a List using calls to its get() method rather
than calls to its iterator.

Statements | 57

www.it-ebooks.info

-
]
<
[
(2]
<
3
-
o
X

http://www.it-ebooks.info/

The break Statement

A break statement causes the Java interpreter to skip immediately to the end of a
containing statement. We have already seen the break statement used with the
switch statement. The break statement is most often written as simply the keyword
break followed by a semicolon:

break;

When used in this form, it causes the Java interpreter to immediately exit the inner-
most containing while, do, for, or switch statement. For example:

for(int 1 = 0; 1 < data.length; i++) {
if (data[i] == target) { // When we find what we're looking for,
index = i; // remember where we found it
break; // and stop looking!
}

} // The Java interpreter goes here after executing break

The break statement can also be followed by the name of a containing labeled state-
ment. When used in this form, break causes the Java interpreter to immediately exit
the named block, which can be any kind of statement, not just a loop or switch. For
example:

if (data !'= null) {

for(int row = 0; row < numrows; row++) {

for(int col = 0; col < numcols; col++) {

if (data[row][col] == null)
break TESTFORNULL; // treat the array as undefined.

}

}
} // Java interpreter goes here after executing break TESTFORNULL

The continue Statement

While a break statement exits a loop, a continue statement quits the current itera-
tion of a loop and starts the next one. continue, in both its unlabeled and labeled
forms, can be used only within a while, do, or for loop. When used without a label,
continue causes the innermost loop to start a new iteration. When used with a label
that is the name of a containing loop, it causes the named loop to start a new itera-
tion. For example:

for(int 1 = 0; i1 < data.length; i++) { // Loop through data.

if (data[i] == -1) // If a data value is missing,
continue; // skip to the next iteration.
process(data[i]); // Process the data value.

3

while, do, and for loops differ slightly in the way that continue starts a new
iteration:

58 | Chapter2: Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

« With a while loop, the Java interpreter simply returns to the top of the loop,
tests the loop condition again, and, if it evaluates to true, executes the body of
the loop again.

« With a do loop, the interpreter jumps to the bottom of the loop, where it tests
the loop condition to decide whether to perform another iteration of the loop.

o With a for loop, the interpreter jumps to the top of the loop, where it first eval-
uates the update expression and then evaluates the test expression to decide
whether to loop again. As you can see from the examples, the behavior of a for
loop with a continue statement is different from the behavior of the “basically
equivalent” while loop presented earlier; update gets evaluated in the for loop
but not in the equivalent while loop.

The return Statement

A return statement tells the Java interpreter to stop executing the current method.
If the method is declared to return a value, the return statement must be followed
by an expression. The value of the expression becomes the return value of the
method. For example, the following method computes and returns the square of a
number:

double square(double x) { // A method to compute x squared
return x * x; // Compute and return a value

}

Some methods are declared void to indicate that they do not return any value. The
Java interpreter runs methods like this by executing their statements one by one
until it reaches the end of the method. After executing the last statement, the inter-
preter returns implicitly. Sometimes, however, a void method has to return explic-
itly before reaching the last statement. In this case, it can use the return statement
by itself, without any expression. For example, the following method prints, but
does not return, the square root of its argument. If the argument is a negative num-
ber, it returns without printing anything:

// A method to print square root of x
void printSquareRoot(double x) {

if (x < 0) return; // If x 1s negative, return
System.out.println(Math.sqrt(x)); // Print the square root of x
} // Method end: return implicitly

The synchronized Statement

Java has always provided support for multithreaded programming. We cover this in
some detail later on (especially in “Java’s Support for Concurrency” on page 208)—
but the reader should be aware that concurrency is difficult to get right, and has a
number of subtleties.

Statements | 59

www.it-ebooks.info

-
1]
<
o
(2]
<
3
-
o
X

http://www.it-ebooks.info/

In particular, when working with multiple threads, you must often take care to pre-
vent multiple threads from modifying an object simultaneously in a way that might
corrupt the object’s state. Java provides the synchronized statement to help the pro-
grammer prevent corruption. The syntax is:

synchronized (expression) {
statements

}

expression is an expression that must evaluate to an object or an array. statements
constitute the code of the section that could cause damage and must be enclosed in
curly braces.

Before executing the statement block, the Java interpreter first obtains an exclusive
lock on the object or array specified by expression. It holds the lock until it is fin-
ished running the block, then releases it. While a thread holds the lock on an object,
no other thread can obtain that lock.

The synchronized keyword is also available as a method modifier in Java, and when
applied to a method, the synchronized keyword indicates that the entire method is
locked. For a synchronized class method (a static method), Java obtains an exclu-
sive lock on the class before executing the method. For a synchronized instance
method, Java obtains an exclusive lock on the class instance. (Class and instance
methods are discussed in Chapter 3.)

The throw Statement

An exception is a signal that indicates some sort of exceptional condition or error
has occurred. To throw an exception is to signal an exceptional condition. To catch
an exception is to handle it—to take whatever actions are necessary to recover from
it. In Java, the throw statement is used to throw an exception:

throw expression;

The expression must evaluate to an exception object that describes the exception
or error that has occurred. We'll talk more about types of exceptions shortly; for
now, all you need to know is that an exception is represented by an object, which
has a slightly specialized role. Here is some example code that throws an exception:

public static double factorial(int x) {
if (x < 0)
throw new IllegalArgumentException("x must be >= 0");
double fact;
for(fact=1.0; x > 1; fact *= x, x--)
/* empty */ ; // Note use of the empty statement
return fact;

}

When the Java interpreter executes a throw statement, it immediately stops normal
program execution and starts looking for an exception handler that can catch, or
handle, the exception. Exception handlers are written with the try/catch/finally

60 | Chapter 2:Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

statement, which is described in the next section. The Java interpreter first looks at
the enclosing block of code to see if it has an associated exception handler. If so, it
exits that block of code and starts running the exception-handling code associated
with the block. After running the exception handler, the interpreter continues exe-
cution at the statement immediately following the handler code.

If the enclosing block of code does not have an appropriate exception handler, the
interpreter checks the next higher enclosing block of code in the method. This con-
tinues until a handler is found. If the method does not contain an exception handler
that can handle the exception thrown by the throw statement, the interpreter stops
running the current method and returns to the caller. Now the interpreter starts
looking for an exception handler in the blocks of code of the calling method. In this
way, exceptions propagate up through the lexical structure of Java methods, up the
call stack of the Java interpreter. If the exception is never caught, it propagates all the
way up to the main() method of the program. If it is not handled in that method,
the Java interpreter prints an error message, prints a stack trace to indicate where
the exception occurred, and then exits.

The try/catch/finally Statement

Java has two slightly different exception-handling mechanisms. The classic form is
the try/catch/finally statement. The try clause of this statement establishes a
block of code for exception handling. This try block is followed by zero or more
catch clauses, each of which is a block of statements designed to handle specific
exceptions. Each catch block can handle more than one different exception—to
indicate that a catch block should handle multiple exceptions, we use the | symbol
to separate the different exceptions a catch block should handle. The catch clauses
are followed by an optional finally block that contains cleanup code guaranteed to
be executed regardless of what happens in the try block.

try Block Syntax

Both the catch and finally clauses are optional, but every try block must be
accompanied by at least one or the other. The try, catch, and finally blocks all
begin and end with curly braces. These are a required part of the syntax and cannot
be omitted, even if the clause contains only a single statement.

The following code illustrates the syntax and purpose of the try/catch/finally
statement:

try {
// Normally this code runs from the top of the block to the bottom
// without problems. But it can sometimes throw an exception,
// either directly with a throw statement or indirectly by calling
// a method that throws an exception.

}

catch (SomeException el) {

Statements | 61

www.it-ebooks.info

-
]
<
o
(2]
<
3
-
o
X

http://www.it-ebooks.info/

// This block contains statements that handle an exception object
// of type SomeException or a subclass of that type. Statements in
// this block can refer to that exception object by the name el.

}

catch (AnotherException | YetAnotherException e2) {
// This block contains statements that handle an exception of
// type AnotherException or YetAnotherException, or a subclass of
// either of those types. Statements in this block refer to the
// exception object they receive by the name e2.

}

finally {
// This block contains statements that are always executed
// after we leave the try clause, regardless of whether we leave it:
// 1) normally, after reaching the bottom of the block;
// 2) because of a break, continue, or return statement;
// 3) with an exception that is handled by a catch clause above;
// 4) with an uncaught exception that has not been handled.
// If the try clause calls System.exit(), however, the interpreter
// exits before the finally clause can be run.

try

The try clause simply establishes a block of code that either has its exceptions han-
dled or needs special cleanup code to be run when it terminates for any reason. The
try clause by itself doesn’t do anything interesting; it is the catch and finally clau-
ses that do the exception-handling and cleanup operations.

catch

A try block can be followed by zero or more catch clauses that specify code to han-
dle various types of exceptions. Each catch clause is declared with a single argu-
ment that specifies the types of exceptions the clause can handle (possibly using the
special | syntax to indicate that the catch block can handle more than one type of
exception) and also provides a name the clause can use to refer to the exception
object it is currently handling. Any type that a catch block wishes to handle must be
some subclass of Throwable.

When an exception is thrown, the Java interpreter looks for a catch clause with an
argument that matches the same type as the exception object or a superclass of that
type. The interpreter invokes the first such catch clause it finds. The code within a
catch block should take whatever action is necessary to cope with the exceptional
condition. If the exception is a java.io.FileNotFoundException exception, for
example, you might handle it by asking the user to check his spelling and try again.

It is not required to have a catch clause for every possible exception; in some cases,
the correct response is to allow the exception to propagate up and be caught by the
invoking method. In other cases, such as a programming error signaled by Null
PointerException, the correct response is probably not to catch the exception at

62 | Chapter2: Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

all, but allow it to propagate and have the Java interpreter exit with a stack trace and
an error message.

finally

The finally clause is generally used to clean up after the code in the try clause
(e.g., close files and shut down network connections). The finally clause is useful
because it is guaranteed to be executed if any portion of the try block is executed,
regardless of how the code in the try block completes. In fact, the only way a try
clause can exit without allowing the finally clause to be executed is by invoking
the System.exit() method, which causes the Java interpreter to stop running.

In the normal case, control reaches the end of the try block and then proceeds to
the finally block, which performs any necessary cleanup. If control leaves the try
block because of a return, continue, or break statement, the finally block is exe-
cuted before control transfers to its new destination.

If an exception occurs in the try block and there is an associated catch block to
handle the exception, control transfers first to the catch block and then to the
finally block. If there is no local catch block to handle the exception, control
transfers first to the finally block, and then propagates up to the nearest contain-
ing catch clause that can handle the exception.

If a finally block itself transfers control with a return, continue, break, or throw
statement or by calling a method that throws an exception, the pending control
transfer is abandoned, and this new transfer is processed. For example, if a finally
clause throws an exception, that exception replaces any exception that was in the
process of being thrown. If a finally clause issues a return statement, the method

returns normally, even if an exception has been thrown and has not yet been
handled.

try and finally can be used together without exceptions or any catch clauses. In
this case, the finally block is simply cleanup code that is guaranteed to be exe-
cuted, regardless of any break, continue, or return statements within the try
clause.

The try-with-resources Statement

The standard form of a try block is very general, but there is a common set of cir-
cumstances that require developers to be very careful when writing catch and
finally blocks. These circumstances are when operating with resources that need
to be cleaned up or closed when no longer needed.

Java (since version 7) provides a very useful mechanism for automatically closing
resources that require cleanup. This is known as try-with-resources, or TWR. We
discuss TWR in detail in “Classic Java I/O” on page 289—but for completeness, let’s

Statements | 63

www.it-ebooks.info

-
]
<
o
(2]
<
3
-
o
X

http://www.it-ebooks.info/

introduce the syntax now. The following example shows how to open a file using the
FileInputStream class (which results in an object which will require cleanup):

try (InputStream is = new FileInputStream("/Users/ben/details.txt")) {
// ... process the file
}

This new form of try takes parameters that are all objects that require cleanup.?
These objects are scoped to this try block, and are then cleaned up automatically no
matter how this block is exited. The developer does not need to write any catch or
finally blocks—the Java compiler automatically inserts correct cleanup code.

All new code that deals with resources should be written in the TWR style—it is
considerably less error prone than manually writing catch blocks, and does not suf-
fer from the problems that plague techniques such as finalization (see “Finalization”
on page 206 for details).

The assert Statement

An assert statement is an attempt to provide a capability to verify design assump-
tions in Java code. An assertion consists of the assert keyword followed by a
boolean expression that the programmer believes should always evaluate to true. By
default, assertions are not enabled, and the assert statement does not actually do
anything.

It is possible to enable assertions as a debugging tool, however; when this is done,
the assert statement evaluates the expression. If it is indeed true, assert does
nothing. On the other hand, if the expression evaluates to false, the assertion fails,
and the assert statement throws a java.lang.AssertionError.

Outside of the core JDK libraries, the assert statement is
extremely rarely used. It turns out to be too inflexible for test-
ing most applications and is not often used by ordinary devel-
opers, except sometimes for field-debugging complex multi-
threaded applications.

The assert statement may include an optional second expression, separated from
the first by a colon. When assertions are enabled and the first expression evaluates
to false, the value of the second expression is taken as an error code or error mes-
sage and is passed to the AssertionError() constructor. The full syntax of the
statement is:

assert assertion;
or:

assert assertion : errorcode;

2 Technically, they must all implement the AutoCloseable interface.

64 | Chapter 2:Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

To use assertions effectively, you must also be aware of a couple of fine points. First,
remember that your programs will normally run with assertions disabled and only
sometimes with assertions enabled. This means that you should be careful not to
write assertion expressions that contain side effects.

You should never throw AssertionError from your own
code, as it may have unexpected results in future versions
of the platform.

If an AssertionError is thrown, it indicates that one of the programmer’s assump-
tions has not held up. This means that the code is being used outside of the parame-
ters for which it was designed, and it cannot be expected to work correctly. In short,
there is no plausible way to recover from an AssertionError, and you should not
attempt to catch it (unless you catch it at the top level simply so that you can display
the error in a more user-friendly fashion).

Enabling assertions

For efficiency, it does not make sense to test assertions each time code is executed—
assert statements encode assumptions that should always be true. Thus, by default,
assertions are disabled, and assert statements have no effect. The assertion code
remains compiled in the class files, however, so it can always be enabled for diag-
nostic or debugging purposes. You can enable assertions, either across the board or
selectively, with command-line arguments to the Java interpreter.

To enable assertions in all classes except for system classes, use the -ea argument.
To enable assertions in system classes, use -esa. To enable assertions within a spe-
cific class, use -ea followed by a colon and the classname:

java - com.example.sorters.MergeSort com.example.sorters.Test

To enable assertions for all classes in a package and in all of its subpackages, follow
the -ea argument with a colon, the package name, and three dots:

java - com.example.sorters... com.example.sorters.Test

You can disable assertions in the same way, using the -da argument. For example, to
enable assertions throughout a package and then disable them in a specific class or
subpackage, use:

java -ea:com.example.sorters... -da:com.example.sorters.QuickSort
java -ea:com.example.sorters... -da:com.example.sorters.plugins..

Finally, it is possible to control whether or not assertions are enabled or disabled at
classloading time. If you use a custom classloader (see Chapter 11 for details on cus-
tom classloading) in your program and want to turn on assertions, you may be
interested in these methods.

Statements | 65

www.it-ebooks.info

-
]
<
[
(2]
<
3
-
o
X

http://www.it-ebooks.info/

Methods

A method is a named sequence of Java statements that can be invoked by other Java
code. When a method is invoked, it is passed zero or more values known as argu-
ments. The method performs some computations and, optionally, returns a value.
As described earlier in “Expressions and Operators” on page 30, a method
invocation is an expression that is evaluated by the Java interpreter. Because method
invocations can have side effects, however, they can also be used as expression state-
ments. This section does not discuss method invocation, but instead describes how
to define methods.

Defining Methods

You already know how to define the body of a method; it is simply an arbitrary
sequence of statements enclosed within curly braces. What is more interesting about
a method is its signature.’ The signature specifies the following:

o The name of the method
o The number, order, type, and name of the parameters used by the method
o The type of the value returned by the method

o The checked exceptions that the method can throw (the signature may also list
unchecked exceptions, but these are not required)

o Various method modifiers that provide additional information about the
method

A method signature defines everything you need to know about a method before
calling it. It is the method specification and defines the API for the method. In order
to use the Java platform’s online API reference, you need to know how to read a
method signature. And, in order to write Java programs, you need to know how to
define your own methods, each of which begins with a method signature.

A method signature looks like this:
modifiers type name (paramlist) [throws exceptions]

The signature (the method specification) is followed by the method body (the
method implementation), which is simply a sequence of Java statements enclosed in
curly braces. If the method is abstract (see Chapter 3), the implementation is omit-
ted, and the method body is replaced with a single semicolon.

The signature of a method may also include type variable declarations—such
methods are known as generic methods. Generic methods and type variables are dis-
cussed in Chapter 4.

3 In the Java Language Specification, the term “signature” has a technical meaning that is slightly
different than that used here. This book uses a less formal definition of method signature.

66 | Chapter 2:Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

Here are some example method definitions, which begin with the signature and are
followed by the method body:

// This method is passed an array of strings and has no return value.
// ALl Java programs have an entry point with this name and signature.
public static void main(String[] args) {
if (args.length > 0) System.out.println("Hello
else System.out.println("Hello world");

+ args[0]);

}

// This method is passed two double arguments and returns a double.
static double distanceFromOrigin(double x, double y) {
return Math.sqrt(x*x + y*y);

}

// This method is abstract which means it has no body.

// Note that it may throw exceptions when invoked.

protected abstract String readText(File f, String encoding)
throws FileNotFoundException, UnsupportedEncodingException;

modifiers is zero or more special modifier keywords, separated from each other by
spaces. A method might be declared with the public and static modifiers, for
example. The allowed modifiers and their meanings are described in the next sec-
tion.

The type in a method signature specifies the return type of the method. If the
method does not return a value, type must be void. If a method is declared with a
non-votid return type, it must include a return statement that returns a value of (or
convertible to) the declared type.

A constructor is a block of code, similar to a method, that is used to initialize newly
created objects. As we'll see in Chapter 3, constructors are defined in a very similar
way to methods, except that their signatures do not include this type specification.

The name of a method follows the specification of its modifiers and type. Method
names, like variable names, are Java identifiers and, like all Java identifiers, may
contain letters in any language represented by the Unicode character set. It is legal,
and often quite useful, to define more than one method with the same name, as
long as each version of the method has a different parameter list. Defining multiple
methods with the same name is called method overloading.

Unlike some other languages, Java does not have anonymous
methods. Instead, Java 8 introduces lambda expressions,
which are similar to anonymous methods, but which the Java
runtime automatically converts to a suitable named method—
see “Lambda Expressions” on page 76 for more details.

For example, the System.out.println() method we've seen already is an overloa-
ded method. One method by this name prints a string and other methods by the
same name print the values of the various primitive types. The Java compiler

Methods | 67

www.it-ebooks.info

-
]
<
o
(2]
<
3
-
o
X

http://www.it-ebooks.info/

decides which method to call based on the type of the argument passed to the
method.

When you are defining a method, the name of the method is always followed by the
method’s parameter list, which must be enclosed in parentheses. The parameter list
defines zero or more arguments that are passed to the method. The parameter spec-
ifications, if there are any, each consist of a type and a name and are separated from
each other by commas (if there are multiple parameters). When a method is
invoked, the argument values it is passed must match the number, type, and order
of the parameters specified in this method signature line. The values passed need
not have exactly the same type as specified in the signature, but they must be con-
vertible to those types without casting.

When a Java method expects no arguments, its parameter list
is simply (), not (void). Java does not regard void as a type—
C and C++ programmers in particular should pay heed.

Java allows the programmer to define and invoke methods that accept a variable
number of arguments, using a syntax known colloquially as varargs. Varargs are
covered in detail later in this chapter.

The final part of a method signature is the throws clause, which is used to list the
checked exceptions that a method can throw. Checked exceptions are a category of
exception classes that must be listed in the throws clauses of methods that can
throw them. If a method uses the throw statement to throw a checked exception, or
if it calls some other method that throws a checked exception and does not catch or
handle that exception, the method must declare that it can throw that exception. If a
method can throw one or more checked exceptions, it specifies this by placing the
throws keyword after the argument list and following it by the name of the excep-
tion class or classes it can throw. If a method does not throw any exceptions, it does
not use the throws keyword. If a method throws more than one type of exception,
separate the names of the exception classes from each other with commas. More on
this in a bit.

Method Modifiers

The modifiers of a method consist of zero or more modifier keywords such as pub
lic, static, or abstract. Here is a list of allowed modifiers and their meanings:

abstract
An abstract method is a specification without an implementation. The curly
braces and Java statements that would normally comprise the body of the
method are replaced with a single semicolon. A class that includes an abstract
method must itself be declared abstract. Such a class is incomplete and cannot
be instantiated (see Chapter 3).

68 | Chapter 2:Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

final
A final method may not be overridden or hidden by a subclass, which makes
it amenable to compiler optimizations that are not possible for regular meth-
ods. All private methods are implicitly final, as are all methods of any class
that is declared final.

native
The native modifier specifies that the method implementation is written in
some “native” language such as C and is provided externally to the Java pro-
gram. Like abstract methods, native methods have no body: the curly braces
are replaced with a semicolon.

-
]
<
o
(2]
<
3
-
o
X

Implementing native Methods

When Java was first released, native methods were sometimes used for efficiency
reasons. That is almost never necessary today. Instead, native methods are used to
interface Java code to existing libraries written in C or C++. native methods are
implicitly platform-dependent, and the procedure for linking the implementation
with the Java class that declares the method is dependent on the implementation of
the Java virtual machine. native methods are not covered in this book.

public, protected, private
These access modifiers specify whether and where a method can be used out-
side of the class that defines it. These very important modifiers are explained in
Chapter 3.

static
A method declared static is a class method associated with the class itself
rather than with an instance of the class (we cover this in more detail in Chap-
ter 3).

strictfp
The fp in this awkwardly named, rarely used modifier stands for “floating
point” Java normally takes advantage of any extended precision available to the
runtime platform’s floating-point hardware. The use of this keyword forces Java
to strictly obey the standard while running the strictfp method and only per-
form floating-point arithmetic using 32- or 64-bit floating-point formats, even
if this makes the results less accurate.

synchronized
The synchronized modifier makes a method threadsafe. Before a thread can
invoke a synchronized method, it must obtain a lock on the method’s class (for
static methods) or on the relevant instance of the class (for non-static
methods). This prevents two threads from executing the method at the same
time.

Methods | 69

www.it-ebooks.info

http://www.it-ebooks.info/

The synchronized modifier is an implementation detail (because methods can
make themselves threadsafe in other ways) and is not formally part of the method
specification or API. Good documentation specifies explicitly whether a method is
threadsafe; you should not rely on the presence or absence of the synchronized
keyword when working with multithreaded programs.

Annotations are an interesting special case (see Chapter 4 for
more on annotations)—they can be thought of as a halfway
house between a method modifier and additional supplemen-
tary type information.

Checked and Unchecked Exceptions

The Java exception-handling scheme distinguishes between two types of exceptions,
known as checked and unchecked exceptions.

The distinction between checked and unchecked exceptions has to do with the cir-
cumstances under which the exceptions could be thrown. Checked exceptions arise
in specific, well-defined circumstances, and very often are conditions from which
the application may be able to partially or fully recover.

For example, consider some code that might find its configuration file in one of sev-
eral possible directories. If we attempt to open the file from a directory it isn’t
present in, then a FileNotFoundException will be thrown. In our example, we want
to catch this exception and move on to try the next possible location for the file. In
other words, although the file not being present is an exceptional condition, it is one
from which we can recover, and it is an understood and anticipated failure.

On the other hand, in the Java environment there are a set of failures that cannot
easily be predicted or anticipated, due to such things as runtime conditions or abuse
of library code. There is no good way to predict an OutOfMemoryError, for example,
and any method that uses objects or arrays can throw a NullPointerException if it
is passed an invalid null argument.

These are the unchecked exceptions—and practically any method can throw an
unchecked exception at essentially any time. They are the Java environments ver-
sion of Murphy’s law: “Anything that can go wrong, will go wrong” Recovery from
an unchecked exception is usually very difficult, if not impossible—simply due to
their sheer unpredictability.

To figure out whether an exception is checked or unchecked, remember that excep-
tions are Throwable objects and that exceptions fall into two main categories, speci-
fied by the Error and Exception subclasses. Any exception object that is an Error is
unchecked. There is also a subclass of Exception called RuntimeException—and
any subclass of RuntimeException is also an unchecked exception. All other excep-
tions are checked exceptions.

70 | Chapter2: Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

Working with checked exceptions

Java has different rules for working with checked and unchecked exceptions. If you
write a method that throws a checked exception, you must use a throws clause to
declare the exception in the method signature. The Java compiler checks to make
sure you have declared them in method signatures and produces a compilation
error if you have not (that’s why they’re called “checked exceptions”).

Even if you never throw a checked exception yourself, sometimes you must use a
throws clause to declare a checked exception. If your method calls a method that
can throw a checked exception, you must either include exception-handling code to
handle that exception or use throws to declare that your method can also throw that
exception.

For example, the following method tries to estimate the size of a web page—it uses
the standard java.net libraries, and the class URL (we’ll meet these in Chapter 10) to
contact the web page. It uses methods and constructors that can throw various types
of java.io.IOException objects, so it declares this fact with a throws clause:

public static estimateHomepageSize(String host) throws IOException {
URL url = new URL("htp://"+ host +"/");
try (InputStream in = url.openStream()) {
return in.available();

}
}

In fact, the preceding code has a bug: we've misspelled the protocol specifier—
there’s no such protocol as htp://. So, the estimateHomepageSize() method will
always fail with a MalformedURLException.

How do you know if the method you are calling can throw a checked exception?
You can look at its method signature to find out. Or, failing that, the Java compiler
will tell you (by reporting a compilation error) if you've called a method whose
exceptions you must handle or declare.

Variable-Length Argument Lists

Methods may be declared to accept, and may be invoked with, variable numbers of
arguments. Such methods are commonly known as varargs methods. The “print for-
matted” method System.out.printf() as well as the related format() methods of
String use varargs, as do a number of important methods from the Reflection API
of java.lang.reflect.

A variable-length argument list is declared by following the type of the last argu-
ment to the method with an ellipsis (..), indicating that this last argument can be
repeated zero or more times. For example:

public static int max(int first, int... rest) {
/* body omitted for now */
}

Methods | 71

www.it-ebooks.info

-
]
<
o
(2]
<
3
-
o
X

http://www.it-ebooks.info/

Varargs methods are handled purely by the compiler. They operate by converting
the variable number of arguments into an array. To the Java runtime, the max()
method is indistinguishable from this one:

public static int max(int first, int[] rest) {
/* body omitted for now */
}

To convert a varargs signature to the “real” signature, simply replace ... with [1.
Remember that only one ellipsis can appear in a parameter list, and it may only
appear on the last parameter in the list.

Let’s flesh out the max() example a little:

public static int max(int first, int... rest) {
int max = first;
for(int 1 : rest) { // legal because rest is actually an array
if (1 > max) max = i;
}

return max;

}

This max() method is declared with two arguments. The first is just a regular int
value. The second, however, may be repeated zero or more times. All of the follow-
ing are legal invocations of max():

max(0)
max(1, 2)
max(16, 8, 4, 2, 1)

Because varargs methods are compiled into methods that expect an array of argu-
ments, invocations of those methods are compiled to include code that creates and
initializes such an array. So the call max(1,2,3) is compiled to this:

max(1, new int[] { 2, 3 })

In fact, if you already have method arguments stored in an array, it is perfectly legal
for you to pass them to the method that way, instead of writing them out individu-
ally. You can treat any ... argument as if it were declared as an array. The converse
is not true, however: you can only use varargs method invocation syntax when the
method is actually declared as a varargs method using an ellipsis.

Introduction to Classes and Objects

Now that we have introduced operators, expressions, statements, and methods, we
can finally talk about classes. A class is a named collection of fields that hold data
values and methods that operate on those values. Classes are just one of five refer-
ence types supported by Java, but they are the most important type. Classes are
thoroughly documented in a chapter of their own (Chapter 3). We introduce them
here, however, because they are the next higher level of syntax after methods, and
because the rest of this chapter requires a basic familiarity with the concept of a

72 | Chapter2: Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

class and the basic syntax for defining a class, instantiating it, and using the result-
ing object.

The most important thing about classes is that they define new data types. For
example, you might define a class named Point to represent a data point in the two-
dimensional Cartesian coordinate system. This class would define fields (each of
type double) to hold the x and y coordinates of a point and methods to manipulate
and operate on the point. The Point class is a new data type.

When discussing data types, it is important to distinguish between the data type
itself and the values the data type represents. char is a data type: it represents Uni-
code characters. But a char value represents a single specific character. A class is a
data type; a class value is called an object. We use the name class because each class
defines a type (or kind, or species, or class) of objects. The Point class is a data type
that represents x,y points, while a Point object represents a single specific x,y point.
As you might imagine, classes and their objects are closely linked. In the sections
that follow, we will discuss both.

Defining a Class
Here is a possible definition of the Point class we have been discussing:

/** Represents a Cartesian (x,y) point */
public class Point {
// The coordinates of the point
public double x, y;
public Point(double x, double y) { // A constructor that
this.x = x; this.y = y; // initializes the fields
}

public double distanceFromOrigin() { // A method that operates
return Math.sqrt(x*x + y*y); // on the x and y fields
}
}

This class definition is stored in a file named Point.java and compiled to a file
named Point.class, where it is available for use by Java programs and other classes.
This class definition is provided here for completeness and to provide context, but
don't expect to understand all the details just yet; most of Chapter 3 is devoted to
the topic of defining classes.

Keep in mind that you don't have to define every class you want to use in a Java
program. The Java platform includes thousands of predefined classes that are guar-
anteed to be available on every computer that runs Java.

Creating an Object

Now that we have defined the Point class as a new data type, we can use the follow-
ing line to declare a variable that holds a Point object:

Point p;

Introduction to Classes and Objects | 73

www.it-ebooks.info

-
]
<
o
(2]
<
3
-
o
X

http://www.it-ebooks.info/

Declaring a variable to hold a Point object does not create the object itself, however.
To actually create an object, you must use the new operator. This keyword is fol-
lowed by the object’s class (i.e., its type) and an optional argument list in parenthe-
ses. These arguments are passed to the constructor for the class, which initializes
internal fields in the new object:

// Create a Point object representing (2,-3.5).
// Declare a variable p and store a reference to the new Point object
Point p = new Point(2.0, -3.5);

// Create some other objects as well

// A Date object that represents the current time
Date d = new Date();

// A HashSet object to hold a set of object

Set words = new HashSet();

The new keyword is by far the most common way to create objects in Java. A few
other ways are also worth mentioning. First, classes that meet certain criteria are so
important that Java defines special literal syntax for creating objects of those types
(as we discuss later in this section). Second, Java supports a dynamic loading mech-
anism that allows programs to load classes and create instances of those classes
dynamically. See Chapter 11 for more details. Finally, objects can also be created by
deserializing them. An object that has had its state saved, or serialized, usually to a
file, can be re-created using the java.io.0bjectInputStrean class.

Using an Object

Now that we've seen how to define classes and instantiate them by creating objects,
we need to look at the Java syntax that allows us to use those objects. Recall that a
class defines a collection of fields and methods. Each object has its own copies of
those fields and has access to those methods. We use the dot character (.) to access
the named fields and methods of an object. For example:

Point p = new Point(2, 3); // Create an object
double x = p.x; // Read a field of the object
p.y = p.X * p.X; // Set the value of a field

double d = p.distanceFromOrigin(); // Access a method of the object

This syntax is very common when programming in object-oriented languages, and
Java is no exception, so you'll see it a lot. Note, in particular, p.distanceFrom0Ori
gin(). This expression tells the Java compiler to look up a method named distance
FromOrigin() (which is defined by the class Point) and use that method to perform
a computation on the fields of the object p. We'll cover the details of this operation
in Chapter 3.

Object Literals

In our discussion of primitive types, we saw that each primitive type has a literal
syntax for including values of the type literally into the text of a program. Java also
defines a literal syntax for a few special reference types, as described next.

74 | Chapter2: Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

String literals

The String class represents text as a string of characters. Because programs usually
communicate with their users through the written word, the ability to manipulate
strings of text is quite important in any programming language. In Java, strings are
objects; the data type used to represent text is the String class. Modern Java pro-
grams usually use more string data than anything else.

Accordingly, because strings are such a fundamental data type, Java allows you to
include text literally in programs by placing it between double-quote (") characters.
For example:

String name = "David";
System.out.println("Hello,

+ name);

Don't confuse the double-quote characters that surround string literals with the
single-quote (or apostrophe) characters that surround char literals. String literals
can contain any of the escape sequences char literals can (see Table 2-2). Escape
sequences are particularly useful for embedding double-quote characters within
double-quoted string literals. For example:

String story = "\t\"How can you stand it?\" he asked sarcastically.\n";

String literals cannot contain comments and may consist of only a single line. Java
does not support any kind of continuation-character syntax that allows two separate
lines to be treated as a single line. If you need to represent a long string of text that
does not fit on a single line, break it into independent string literals and use the +
operator to concatenate the literals. For example:

// This is illegal; string literals cannot be broken across lines.
String x = "This is a test of the
emergency broadcast system";

String s = "This is a test of the " + // Do this instead
"emergency broadcast system";

This concatenation of literals is done when your program is compiled, not when it is
run, so you do not need to worry about any kind of performance penalty.

Type literals

The second type that supports its own special object literal syntax is the class named
Class. Instances of the Class class represent a Java data type, and contain metadata
about the type that is referred to. To include a Class object literally in a Java pro-
gram, follow the name of any data type with .class. For example:

Class<?> typelnt = int.class;
Class<?> typelntArray = int[].class;
Class<?> typePoint = Point.class;

Introduction to Classes and Objects | 75

www.it-ebooks.info

-
]
<
o
(2]
<
3
-
o
X

http://www.it-ebooks.info/

The null reference

The null keyword is a special literal value that is a reference to nothing, or an
absence of a reference. The null value is unique because it is a member of every
reference type. You can assign null to variables of any reference type. For example:

String s = null;
Point p = null;

Lambda Expressions

In Java 8, a major new feature was introduced—Ilambda expressions. These are a very
common programming language construct, and in particular are extremely widely
used in the family of languages known as functional programming languages (e.g.,
Lisp, Haskell, and OCaml). The power and flexibility of lambdas goes far beyond
just functional languages, and they can be found in almost all modern program-
ming languages.

Definition of a Lambda Expression

A lambda expression is essentially a function that does not have a name, and can be
treated as a value in the language. As Java does not allow code to run around on its
own outside of classes, in Java, this means that a lambda is an anonymous method
that is defined on some class (that is possibly unknown to the developer).

The syntax for a lambda expression looks like this:
(paramlist) -> { statements }
One simple, very traditional example:
Runnable r = () -> System.out.println("Hello World");

When a lambda expression is used as a value it is automatically converted to a new
object of the correct type for the variable that it is being placed into. This auto-
conversion and type inference is essential to Java’s approach to lambda expressions.
Unfortunately, it relies on a proper understanding of Java’s type system as a whole.
“Lambda Expressions” on page 171 provides a more detailed explanation of lambda
expressions—so for now, it suffices to simply recognize the syntax for lambdas.

A slightly more complex example:

ActionListener listener = (e) -> {
System.out.println("Event fired at: "+ e.getWhen());
System.out.println("Event command: "+ e.getActionCommand());

1

76 | Chapter 2: Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

Arrays

An array is a special kind of object that holds zero or more primitive values or refer-
ences. These values are held in the elements of the array, which are unnamed vari-
ables referred to by their position or index. The type of an array is characterized by
its element type, and all elements of the array must be of that type.

Array elements are numbered starting with zero, and valid indexes range from zero
to the number of elements minus one. The array element with index 1, for example,
is the second element in the array. The number of elements in an array is its length.
The length of an array is specified when the array is created, and it never changes.

The element type of an array may be any valid Java type, including array types. This
means that Java supports arrays of arrays, which provide a kind of multidimensional
array capability. Java does not support the matrix-style multidimensional arrays
found in some languages.

Array Types

Array types are reference types, just as classes are. Instances of arrays are objects,
just as the instances of a class are.* Unlike classes, array types do not have to be
defined. Simply place square brackets after the element type. For example, the fol-
lowing code declares three variables of array type:

byte b; // byte is a primitive type

byte[] arrayOfBytes; // byte[] is an array of byte values
byte[][] arrayOfArrayOfBytes; // byte[][] is an array of byte[]
String[] points; // String[] is an array of strings

The length of an array is not part of the array type. It is not possible, for example, to
declare a method that expects an array of exactly four int values, for example. If a
method parameter is of type int[], a caller can pass an array with any number
(including zero) of elements.

Array types are not classes, but array instances are objects. This means that arrays
inherit the methods of java.lang.Object. Arrays implement the Cloneable inter-
face and override the clone() method to guarantee that an array can always be
cloned and that clone() never throws a CloneNotSupportedException. Arrays also
implement Serializable so that any array can be serialized if its element type can
be serialized. Finally, all arrays have a public final int field named length that
specifies the number of elements in the array.

Array type widening conversions

Because arrays extend Object and implement the Cloneable and Serializable
interfaces, any array type can be widened to any of these three types. But certain

4 There is a terminology difficulty when discussing arrays. Unlike with classes and their instances,
we use the term “array” for both the array type and the array instance. In practice, it is usually
clear from context whether a type or a value is being discussed.

Arrays | 77

www.it-ebooks.info

-
]
<
o
(2]
<
3
-
o
X

http://www.it-ebooks.info/

array types can also be widened to other array types. If the element type of an array
is a reference type T, and T is assignable to a type S, the array type T[] is assignable
to the array type S[]. Note that there are no widening conversions of this sort for
arrays of a given primitive type. As examples, the following lines of code show legal
array widening conversions:

String[] arrayOfStrings; // Created elsewhere
int[][] arrayOfArraysOfint; // Created elsewhere
// String is assignable to Object,

// so String[] is assignable to Object[]

Object[] oa = arrayOfStrings;

// String implements Comparable, so a String[] can
// be considered a Comparable[]

Comparable[] ca = array0fStrings;

// An int[] is an Object, so int[][] is assignable to Object[]
Object[] o0a2 = arrayOfArraysOfint;

// ALl arrays are cloneable, serializable Objects
Object o = arrayOfStrings;

Cloneable c¢ = arrayOfArraysOfInt;

Serializable s = arrayOfArraysOfInt[0];

This ability to widen an array type to another array type means that the compile-
time type of an array is not always the same as its runtime type.

This widening is known as array covariance—and as we shall
see in “Wildcards” on page 146 it is regarded by modern
standards as a historical artifact and a misfeature, because of
the mismatch between compile and runtime typing that it
exposes.

The compiler must usually insert runtime checks before any operation that stores a
reference value into an array element to ensure that the runtime type of the value
matches the runtime type of the array element. If the runtime check fails, an Arrays
toreException is thrown.

C compatibility syntax

As we've seen, an array type is written simply by placing brackets after the element
type. For compatibility with C and C++, however, Java supports an alternative syn-
tax in variable declarations: brackets may be placed after the name of the variable
instead of, or in addition to, the element type. This applies to local variables, fields,
and method parameters. For example:

// This line declares local variables of type int, int[] and int[][]
int justOne, arrayOfThem[], arrayOfArrays[][];

// These three lines declare fields of the same array type:
public String[][] aasl; // Preferred Java syntax

public String aas2[][]; // C syntax

public String[] aas3[]; // Confusing hybrid syntax

78 | Chapter2:Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

// This method signature includes two parameters with the same type
public static double dotProduct(double[] x, double y[]) { ... }

This compatibility syntax is extremely uncommon, and you
should not use it.

Creating and Initializing Arrays

To create an array value in Java, you use the new keyword, just as you do to create an
object. Array types don’t have constructors, but you are required to specify a length
whenever you create an array. Specify the desired size of your array as a nonnegative
integer between square brackets:

// Create a new array to hold 1024 bytes
byte[] buffer = new byte[1024];

// Create an array of 50 references to strings
String[] lines = new String[50];

When you create an array with this syntax, each of the array elements is automati-
cally initialized to the same default value that is used for the fields of a class: false
for boolean elements, \u0000 for char elements, 0 for integer elements, 0.0 for
floating-point elements, and null for elements of reference type.

Array creation expressions can also be used to create and initialize a multidimen-
sional array of arrays. This syntax is somewhat more complicated and is explained
later in this section.

Array initializers

To create an array and initialize its elements in a single expression, omit the array
length and follow the square brackets with a comma-separated list of expressions
within curly braces. The type of each expression must be assignable to the element
type of the array, of course. The length of the array that is created is equal to the
number of expressions. It is legal, but not necessary, to include a trailing comma fol-
lowing the last expression in the list. For example:

String[] greetings = new String[] { "Hello", "Hi", "Howdy" };
int[] smallPrimes = new int[] { 2, 3, 5, 7, 11, 13, 17, 19, };

Note that this syntax allows arrays to be created, initialized, and used without ever
being assigned to a variable. In a sense, these array creation expressions are anony-
mous array literals. Here are examples:

// Call a method, passing an anonymous array literal that
// contains two strings
String response = askQuestion("Do you want to quit?",

new String[] {"Yes", "No"});

Arrays | 79

www.it-ebooks.info

-
]
<
o
(2]
<
3
-
o
X

http://www.it-ebooks.info/

// Call another method with an anonymous array (of anonymous objects)
double d = computeAreaOfTriangle(new Point[] { new Point(1,2),

new Point(3,4),

new Point(3,2) });

When an array initializer is part of a variable declaration, you may omit the new
keyword and element type and list the desired array elements within curly braces:

String[] greetings = { "Hello", "Hi", "Howdy" };
int[] powersOfTwo = {1, 2, 4, 8, 16, 32, 64, 128};

Array literals are created and initialized when the program is run, not when the pro-
gram is compiled. Consider the following array literal:

int[] perfectNumbers = {6, 28};

This is compiled into Java byte codes that are equivalent to:

int[] perfectNumbers = new int[2];
perfectNumbers[0] = 6;
perfectNumbers[1] = 28;

The fact that Java does all array initialization at runtime has an important corollary.
It means that the expressions in an array initializer may be computed at runtime
and need not be compile-time constants. For example:

Point[] points = { circlel.getCenterPoint(), circle2.getCenterPoint() };

Using Arrays

Once an array has been created, you are ready to start using it. The following sec-
tions explain basic access to the elements of an array and cover common idioms of
array usage such as iterating through the elements of an array and copying an array
or part of an array.

Accessing array elements

The elements of an array are variables. When an array element appears in an expres-
sion, it evaluates to the value held in the element. And when an array element
appears on the left-hand side of an assignment operator, a new value is stored into
that element. Unlike a normal variable, however, an array element has no name,
only a number. Array elements are accessed using a square bracket notation. If a is
an expression that evaluates to an array reference, you index that array and refer to
a specific element with a[1], where 1 is an integer literal or an expression that eval-
uates to an int. For example:

// Create an array of two strings

String[] responses = new String[2];

responses[0] = "Yes"; // Set the first element of the array
responses[1] = "No"; // Set the second element of the array

// Now read these array elements

80 | Chapter 2:Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

System.out.println(question + " (" + responses[0] + "/" +
responses[1] + "): ");

// Both the array reference and the array index may be more complex
double datum = data.getMatrix()[data.row() * data.numColumns() +
data.column()];

The array index expression must be of type int, or a type that can be widened to an
int: byte, short, or even char. It is obviously not legal to index an array with a
boolean, float, or double value. Remember that the length field of an array is an
int and that arrays may not have more than Integer.MAX_VALUE elements. Index-
ing an array with an expression of type long generates a compile-time error, even if
the value of that expression at runtime would be within the range of an int.

Array bounds

Remember that the first element of an array a is a[0] , the second element is a[1],
and the last is a[a.length-1].

A common bug involving arrays is use of an index that is too small (a negative
index) or too large (greater than or equal to the array length). In languages like C
or C++, accessing elements before the beginning or after the end of an array yields
unpredictable behavior that can vary from invocation to invocation and platform to
platform. Such bugs may not always be caught, and if a failure occurs, it may be at
some later time. While it is just as easy to write faulty array indexing code in Java,
Java guarantees predictable results by checking every array access at runtime. If an
array index is too small or too large, Java immediately throws an ArrayIndexOutOf
BoundsException.

Iterating arrays

It is common to write loops that iterate through each of the elements of an array in
order to perform some operation on it. This is typically done with a for loop. The
following code, for example, computes the sum of an array of integers:

int[] primes = { 2, 3, 5, 7, 11, 13, 17, 19, 23 };

int sumOfPrimes = 0;

for(int 1 = 0; 1 < primes.length; i++)
sumOfPrimes += primes[i];

The structure of this for loop is idiomatic, and you'll see it frequently. Java also has
the foreach syntax that we've already met. The summing code could be rewritten
succinctly as follows:

for(int p : primes) sumOfPrimes += p;

Copying arrays

All array types implement the Cloneable interface, and any array can be copied by
invoking its clone() method. Note that a cast is required to convert the return value

Arrays | 81

www.it-ebooks.info

-
]
<
o
(2]
<
3
-
o
X

http://www.it-ebooks.info/

to the appropriate array type, but that the clone() method of arrays is guaranteed
not to throw CloneNotSupportedException:

int[] data = { 1, 2, 3 };
int[] copy = (int[]) data.clone();

The clone() method makes a shallow copy. If the element type of the array is a ref-
erence type, only the references are copied, not the referenced objects themselves.
Because the copy is shallow, any array can be cloned, even if the element type is not
itself Cloneablle.

Sometimes you simply want to copy elements from one existing array to another
existing array. The System.arraycopy() method is designed to do this efficiently,
and you can assume that Java VM implementations perform this method using
high-speed block copy operations on the underlying hardware.

arraycopy() is a straightforward function that is difficult to use only because it has
five arguments to remember. First pass the source array from which elements are to
be copied. Second, pass the index of the start element in that array. Pass the destina-
tion array and the destination index as the third and fourth arguments. Finally, as
the fifth argument, specify the number of elements to be copied.

arraycopy() works correctly even for overlapping copies within the same array. For
example, if you've “deleted” the element at index @ from array a and want to shift the
elements between indexes 1 and n down one so that they occupy indexes @ through
n-1 you could do this:

System.arraycopy(a, 1, a, 0, n);

Array utilities

The java.util.Arrays class contains a number of static utility methods for work-
ing with arrays. Most of these methods are heavily overloaded, with versions for
arrays of each primitive type and another version for arrays of objects. The sort()
and binarySearch() methods are particularly useful for sorting and searching
arrays. The equals() method allows you to compare the content of two arrays. The
Arrays.toString() method is useful when you want to convert array content to a
string, such as for debugging or logging output.

The Arrays class also includes deepEquals(), deepHashCode(), and deepTo
String() methods that work correctly for multidimensional arrays.

Multidimensional Arrays

As we've seen, an array type is written as the element type followed by a pair of
square brackets. An array of char is char[], and an array of arrays of char is char[]
[1. When the elements of an array are themselves arrays, we say that the array is
multidimensional. In order to work with multidimensional arrays, you need to
understand a few additional details.

82 | Chapter 2:Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

Imagine that you want to use a multidimensional array to represent a multiplication
table:

int[][] products; // A multiplication table

Each of the pairs of square brackets represents one dimension, so this is a two-
dimensional array. To access a single int element of this two-dimensional array, you
must specify two index values, one for each dimension. Assuming that this array
was actually initialized as a multiplication table, the int value stored at any given
element would be the product of the two indexes. That is, products[2][4] would
be 8, and products[3][7] would be 21.

To create a new multidimensional array, use the new keyword and specify the size of
both dimensions of the array. For example:

int[][] products = new int[10][10];

In some languages, an array like this would be created as a single block of 100 int
values. Java does not work this way. This line of code does three things:

o Declares a variable named products to hold an array of arrays of int.
o Creates a 10-element array to hold 10 arrays of int.

o Creates 10 more arrays, each of which is a 10-element array of int. It assigns
each of these 10 new arrays to the elements of the initial array. The default
value of every int element of each of these 10 new arrays is 0.

To put this another way, the previous single line of code is equivalent to the follow-
ing code:
int[][] products = new int[10][]; // An array to hold 10 int[] values

for(int 1 = 0; 1 < 10; i++) // Loop 10 times...
products[i] = new int[10]; // ...and create 10 arrays

The new keyword performs this additional initialization automatically for you. It
works with arrays with more than two dimensions as well:

float[][][] globalTemperatureData = new float[360][180][100];

When using new with multidimensional arrays, you do not have to specify a size for
all dimensions of the array, only the leftmost dimension or dimensions. For exam-
ple, the following two lines are legal:

float[][][] globalTemperatureData = new float[360][][];
float[][][] globalTemperatureData = new float[360][180][];

The first line creates a single-dimensional array, where each element of the array can
hold a float[][]. The second line creates a two-dimensional array, where each ele-
ment of the array is a float[]. If you specify a size for only some of the dimensions
of an array, however, those dimensions must be the leftmost ones. The following
lines are not legal:

Arrays | 83

www.it-ebooks.info

-
]
<
o
(2]
<
3
-
o
X

http://www.it-ebooks.info/

float[][][] globalTemperatureData = new float[360][][100]; // Error!
float[][][] globalTemperatureData = new float[][180][100]; // Error!

Like a one-dimensional array, a multidimensional array can be initialized using an
array initializer. Simply use nested sets of curly braces to nest arrays within arrays.
For example, we can declare, create, and initialize a 5 x 5 multiplication table like
this:

int[][] products = { {0, 0, 0, 0, 0},
{0, 1, 2, 3, 4},
{0, 2, 4, 6, 8},
{0, 3, 6, 9, 12},
{0, 4, 8, 12, 16} };

Or, if you want to use a multidimensional array without declaring a variable, you
can use the anonymous initializer syntax:

boolean response = bilingualQuestion(question, new String[][] {
{ ”YeS”, ”NO" }’
{ "oui", "Non" }1);

When you create a multidimensional array using the new keyword, it is usually good
practice to only use rectangular arrays: one in which all the array values for a given
dimension have the same size.

Reference Types

Now that we've covered arrays and introduced classes and objects, we can turn to a
more general description of reference types. Classes and arrays are two of Javas five
kinds of reference types. Classes were introduced earlier and are covered in com-
plete detail, along with interfaces, in Chapter 3. Enumerated types and annotation
types are reference types introduced in Chapter 4.

This section does not cover specific syntax for any particular reference type, but
instead explains the general behavior of reference types and illustrates how they dif-
fer from Java’s primitive types. In this section, the term object refers to a value or
instance of any reference type, including arrays.

Reference Versus Primitive Types

Reference types and objects differ substantially from primitive types and their prim-
itive values:

o Eight primitive types are defined by the Java language, and the programmer
cannot define new primitive types. Reference types are user-defined, so there is
an unlimited number of them. For example, a program might define a class
named Point and use objects of this newly defined type to store and manipu-
late x,y points in a Cartesian coordinate system.

o Primitive types represent single values. Reference types are aggregate types that
hold zero or more primitive values or objects. Our hypothetical Point class, for

84 | Chapter 2:Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

example, might hold two double values to represent the x and y coordinates of
the points. The char[] and Point[] array types are aggregate types because
they hold a sequence of primitive char values or Point objects.

Primitive types require between one and eight bytes of memory. When a primi-
tive value is stored in a variable or passed to a method, the computer makes a
copy of the bytes that hold the value. Objects, on the other hand, may require
substantially more memory. Memory to store an object is dynamically allocated
on the heap when the object is created and this memory is automatically
“garbage collected” when the object is no longer needed.

When an object is assigned to a variable or passed to a
method, the memory that represents the object is not copied.
Instead, only a reference to that memory is stored in the vari-
able or passed to the method.

References are completely opaque in Java and the representation of a reference is an
implementation detail of the Java runtime. If you are a C programmer, however, you
can safely imagine a reference as a pointer or a memory address. Remember,
though, that Java programs cannot manipulate references in any way.

Unlike pointers in C and C++, references cannot be converted to or from integers,
and they cannot be incremented or decremented. C and C++ programmers should
also note that Java does not support the & address-of operator or the * and -> deref-
erence operators.

Manipulating Objects and Reference Copies
The following code manipulates a primitive int value:

int x = 42;

int y = x;
After these lines execute, the variable y contains a copy of the value held in the vari-
able x. Inside the Java VM, there are two independent copies of the 32-bit
integer 42.

Now think about what happens if we run the same basic code but use a reference
type instead of a primitive type:

Point p = new Point(1.0, 2.0);
Point q = p;

After this code runs, the variable q holds a copy of the reference held in the variable
p. There is still only one copy of the Point object in the VM, but there are now two
copies of the reference to that object. This has some important implications. Sup-
pose the two previous lines of code are followed by this code:

Reference Types | 85

www.it-ebooks.info

-
]
<
o
(2]
<
3
-
o
X

http://www.it-ebooks.info/

System.out.println(p.x); // Print out the x coordinate of p: 1.0
q.x = 13.0; // Now change the X coordinate of q
System.out.println(p.x); // Print out p.x again; this time it is 13.0

Because the variables p and g hold references to the same object, either variable can
be used to make changes to the object, and those changes are visible through the
other variable as well. As arrays are a kind of object then the same thing happens
with arrays, as illustrated by the following code:

// greet holds an array reference
char[] greet = { 'h','e",'l','l",'0" };

char[] cuss = greet; // cuss holds the same reference
cuss[4] = '"!''; // Use reference to change an element
System.out.println(greet); // Prints "hell!"

A similar difference in behavior between primitive types and reference types occurs
when arguments are passed to methods. Consider the following method:

void changePrimitive(int x) {
while(x > 0) {
System.out.println(x--);
}
}

When this method is invoked, the method is given a copy of the argument used to
invoke the method in the parameter x. The code in the method uses x as a loop
counter and decrements it to zero. Because x is a primitive type, the method has its
own private copy of this value, so this is a perfectly reasonable thing to do.

On the other hand, consider what happens if we modify the method so that the
parameter is a reference type:

void changeReference(Point p) {
while(p.x > 0) {
System.out.println(p.x--);
}
}

When this method is invoked, it is passed a private copy of a reference to a Point
object and can use this reference to change the Point object. For example, consider
the following:

Point q = new Point(3.0, 4.5); // A point with an x coordinate of 3
changeReference(q); // Prints 3,2,1 and modifies the Point
System.out.println(q.x); // The x coordinate of q is now 0!

When the changeReference() method is invoked, it is passed a copy of the refer-
ence held in variable q. Now both the variable q and the method parameter p hold
references to the same object. The method can use its reference to change the con-
tents of the object. Note, however, that it cannot change the contents of the variable
q. In other words, the method can change the Point object beyond recognition, but
it cannot change the fact that the variable q refers to that object.

86 | Chapter 2:Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

Comparing Objects

We've seen that primitive types and reference types differ significantly in the way
they are assigned to variables, passed to methods, and copied. The types also differ
in the way they are compared for equality. When used with primitive values, the
equality operator (==) simply tests whether two values are identical (i.e., whether
they have exactly the same bits). With reference types, however, == compares refer-
ences, not actual objects. In other words, == tests whether two references refer to the
same object; it does not test whether two objects have the same content. Here’s an
example:

String letter = "o0";

String s = "hello"; // These two String objects
String t = "hell" + letter; // contain exactly the same text.
if (s == t) System.out.println("equal"); // But they are not equal!

byte[] a={1, 2, 3 };

// A copy with identical content.

byte[] b = (byte[]) a.clone();

if (a == b) System.out.println("equal"); // But they are not equal!

When working with reference types, there are two kinds of equality: equality of ref-
erence and equality of object. It is important to distinguish between these two kinds
of equality. One way to do this is to use the word “identical” when talking about
equality of references and the word “equal” when talking about two distinct objects
that have the same content. To test two nonidentical objects for equality, pass one of
them to the equals() method of the other:

String letter = "o";

String s = "hello"; // These two String objects
String t = "hell" + letter; // contain exactly the same text.
if (s.equals(t)) { // And the equals() method

System.out.println("equal"); // tells us so.
}

All objects inherit an equals() method (from Object), but the default implementa-
tion simply uses == to test for identity of references, not equality of content. A class
that wants to allow objects to be compared for equality can define its own version of
the equals() method. Our Point class does not do this, but the String class does,
as indicated in the code example. You can call the equals() method on an array, but
it is the same as using the == operator, because arrays always inherit the default
equals() method that compares references rather than array content. You can com-
pare arrays for equality with the convenience method java.util.Arrays.equals().

Boxing and Unboxing Conversions

Primitive types and reference types behave quite differently. It is sometimes useful
to treat primitive values as objects, and for this reason, the Java platform includes
wrapper classes for each of the primitive types. Boolean, Byte, Short, Character,
Integer, Long, Float, and Double are immutable, final classes whose instances each

Reference Types | 87

www.it-ebooks.info

-
]
<
o
(2]
<
3
-
o
X

http://www.it-ebooks.info/

hold a single primitive value. These wrapper classes are usually used when you want
to store primitive values in collections such as java.util.List:

// Create a List collection

List numbers = new ArraylList();

// Store a wrapped primitive

numbers.add(new Integer(-1));

// Extract the primitive value

int 1 = ((Integer)numbers.get(0)).intValue();

Java allows types of conversions known as boxing and unboxing conversions. Box-
ing conversions convert a primitive value to its corresponding wrapper object and
unboxing conversions do the opposite. You may explicitly specify a boxing or
unboxing conversion with a cast, but this is unnecessary, as these conversions are
automatically performed when you assign a value to a variable or pass a value to a
method. Furthermore, unboxing conversions are also automatic if you use a wrap-
per object when a Java operator or statement expects a primitive value. Because Java
performs boxing and unboxing automatically, this language feature is often known
as autoboxing.

Here are some examples of automatic boxing and unboxing conversions:

Integer 1 = 0; // int literal 0 boxed to an Integer object
Number n = 0.0f; // float literal boxed to Float and widened to Number
Integer 1 = 1; // this is a boxing conversion

int j = 1; // 1 is unboxed here

i++; // 1 is unboxed, incremented, and then boxed up again
Integer k = 1+2; // 1 i1s unboxed and the sum is boxed up again

i = null;

j=1; // unboxing here throws a NullPointerException

Autoboxing makes dealing with collections much easier as well. Let’s look at an
example that uses Java’s generics (a language feature we’ll meet properly in “Java
Generics” on page 142) that allows us to restrict what types can be put into lists and
other collections:

List<Integer> numbers = new Arraylist<>(); // Create a List of Integer
numbers.add(-1); // Box int to Integer
int 1 = numbers.get(0); // Unbox Integer to int

Packages and the Java Namespace

A package is a named collection of classes, interfaces, and other reference types.
Packages serve to group related classes and define a namespace for the classes they
contain.

The core classes of the Java platform are in packages whose names begin with java.
For example, the most fundamental classes of the language are in the package
java.lang. Various utility classes are in java.util. Classes for input and output are
in java.{io, and classes for networking are in java.net. Some of these packages
contain subpackages, such as java.lang.reflect and java.util.regex.

88 | Chapter 2:Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

Extensions to the Java platform that have been standardized by Oracle (or originally
Sun) typically have package names that begin with javax. Some of these extensions,
such as javax.swing and its myriad subpackages, were later adopted into the core
platform itself. Finally, the Java platform also includes several “endorsed standards,”
which have packages named after the standards body that created them, such as
org.w3c and org.omg.

Every class has both a simple name, which is the name given to it in its definition,
and a fully qualified name, which includes the name of the package of which it is a
part. The String class, for example, is part of the java.lang package, so its fully
qualified name is java.lang.String.

This section explains how to place your own classes and interfaces into a package
and how to choose a package name that won’t conflict with anyone else’s package
name. Next, it explains how to selectively import type names or static members into
the namespace so that you don’t have to type the package name of every class or
interface you use.

Package Declaration

To specify the package a class is to be part of, you use a package declaration. The
package keyword, if it appears, must be the first token of Java code (i.e., the first
thing other than comments and space) in the Java file. The keyword should be fol-
lowed by the name of the desired package and a semicolon. Consider a Java file that
begins with this directive:

package org.apache.commons.net;
All classes defined by this file are part of the package org.apache.commons.net.

If no package directive appears in a Java file, all classes defined in that file are part of
an unnamed default package. In this case, the qualified and unqualified names of a
class are the same.

The possibility of naming conflicts means that you should not
use the default package. As your project grows more compli-
cated, conflicts become almost inevitable—much better to cre-
ate packages right from the start.

Globally Unique Package Names

One of the important functions of packages is to partition the Java namespace and
prevent name collisions between classes. It is only their package names that keep the
java.util.List and java.awt.List classes distinct, for example. In order for this
to work, however, package names must themselves be distinct. As the developer of
Java, Oracle controls all package names that begin with java, javax, and sun.

Packages and the Java Namespace | 89

www.it-ebooks.info

-
]
<
o
(2]
<
3
-
o
X

http://www.it-ebooks.info/

One scheme in common use is to use your domain name, with its elements
reversed, as the prefix for all your package names. For example, the Apache Project
produces a networking library as part of the Apache Commons project. The Com-
mons project can be found at http://commons.apache.org/ and accordingly, the pack-
age name used for the networking library is org.apache.commons. net.

Note that these package-naming rules apply primarily to API developers. If other
programmers will be using classes that you develop along with unknown other
classes, it is important that your package name be globally unique. On the other
hand, if you are developing a Java application and will not be releasing any of the
classes for reuse by others, you know the complete set of classes that your
application will be deployed with and do not have to worry about unforeseen nam-
ing conflicts. In this case, you can choose a package naming scheme for your own
convenience rather than for global uniqueness. One common approach is to use the
application name as the main package name (it may have subpackages beneath it).

Importing Types

When referring to a class or interface in your Java code, you must, by default, use
the fully qualified name of the type, including the package name. If youre writing
code to manipulate a file and need to use the File class of the java.io package, you
must type java.io.File. This rule has three exceptions:

o Types from the package java.lang are so important and so commonly used
that they can always be referred to by their simple names.

o The code in a type p.T may refer to other types defined in the package p by
their simple names.

o Types that have been imported into the namespace with an import declaration
may be referred to by their simple names.

The first two exceptions are known as “automatic imports” The types from
java.lang and the current package are “imported” into the namespace so that they
can be used without their package name. Typing the package name of commonly
used types that are not in java.lang or the current package quickly becomes tedi-
ous, and so it is also possible to explicitly import types from other packages into the
namespace. This is done with the import declaration.

import declarations must appear at the start of a Java file, immediately after the
package declaration, if there is one, and before any type definitions. You may use
any number of import declarations in a file. An import declaration applies to all
type definitions in the file (but not to any import declarations that follow it).

The import declaration has two forms. To import a single type into the namespace,
follow the import keyword with the name of the type and a semicolon:

import java.io.File; // Now we can type File instead of java.io.File

This is known as the “single type import” declaration.

90 | Chapter 2:Java Syntax from the Ground Up

www.it-ebooks.info

http://commons.apache.org/
http://www.it-ebooks.info/

The other form of import is the “on-demand type import”” In this form, you specify
the name of a package followed by the characters . * to indicate that any type from
that package may be used without its package name. Thus, if you want to use several
other classes from the java.io package in addition to the File class, you can simply
import the entire package:

import java.io.*; // Use simple names for all classes in java.io

This on-demand import syntax does not apply to subpackages. If I import the
java.util package, I must still refer to the java.util.zip.ZipInputStrean class
by its fully qualified name.

Using an on-demand type import declaration is not the same as explicitly writing
out a single type import declaration for every type in the package. It is more like an
explicit single type import for every type in the package that you actually use in your
code. This is the reason it’s called “on demand”; types are imported as you use them.

Naming conflicts and shadowing

import declarations are invaluable to Java programming. They do expose us to the
possibility of naming conflicts, however. Consider the packages java.util and
java.awt. Both contain types named List.

java.util.List is an important and commonly used interface. The java.awt pack-
age contains a number of important types that are commonly used in client-side
applications, but java.awt.List has been superseded and is not one of these
important types. It is illegal to import both java.util.List and java.awt.List in
the same Java file. The following single type import declarations produce a compila-
tion error:

import java.util.List;
import java.awt.List;

Using on-demand type imports for the two packages is legal:

import java.util.*; // For collections and other utilities.
import java.awt.*; // For fonts, colors, and graphics.

Difficulty arises, however, if you actually try to use the type List. This type can be
imported “on demand” from either package, and any attempt to use List as an
unqualified type name produces a compilation error. The workaround, in this case,
is to explicitly specify the package name you want.

Because java.util.List is much more commonly used than java.awt.List, it is
useful to combine the two on-demand type import declarations with a single-type
import declaration that serves to disambiguate what we mean when we say List:

import java.util.*; // For collections and other utilities.
import java.awt.*; // For fonts, colors, and graphics.
import java.util.List; // To disambiguate from java.awt.List

Packages and the Java Namespace | 91

www.it-ebooks.info

-
]
<
o
(2]
<
3
-
o
X

http://www.it-ebooks.info/

With these import declarations in place, we can use List to mean the
java.util.List interface. If we actually need to use the java.awt.List class, we
can still do so as long as we include its package name. There are no other naming
conflicts between java.util and java.awt, and their types will be imported “on
demand” when we use them without a package name.

Importing Static Members

As well as types, you can import the static members of types using the keywords
import static. (Static members are explained in Chapter 3. If you are not already
familiar with them, you may want to come back to this section later.) Like type
import declarations, these static import declarations come in two forms: single static
member import and on-demand static member import. Suppose, for example, that
you are writing a text-based program that sends a lot of output to System.out. In
this case, you might use this single static member import to save yourself typing:

import static java.lang.System.out;

With this import in place, you can then use out.println() instead of Sys
tem.out.println(). Or suppose you are writing a program that uses many of the
trigonometric and other functions of the Math class. In a program that is clearly
focused on numerical methods like this, having to repeatedly type the class name
“Math” does not add clarity to your code; it just gets in the way. In this case, an on-
demand static member import may be appropriate:

import static java.lang.Math.*

With this import declaration, you are free to write concise expressions like
sqrt(abs(sin(x))) without having to prefix the name of each static method with
the class name Math.

Another important use of import static declarations is to import the names of
constants into your code. This works particularly well with enumerated types (see
Chapter 4). Suppose, for example, that you want to use the values of this enumer-
ated type in code you are writing:

package climate.temperate;
enum Seasons { WINTER, SPRING, SUMMER, AUTUMN };

You could import the type climate.temperate.Seasons and then prefix the con-
stants with the type name: Seasons.SPRING. For more concise code, you could
import the enumerated values themselves:

import static climate.temperate.Seasons.*;

Using static member import declarations for constants is generally a better techni-
que than implementing an interface that defines the constants.

92 | Chapter 2:Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

Static member imports and overloaded methods

A static import declaration imports a name, not any one specific member with that
name. Because Java allows method overloading and allows a type to have fields and
methods with the same name, a single static member import declaration may
actually import more than one member. Consider this code:

import static java.util.Arrays.sort;

This declaration imports the name “sort” into the namespace, not any one of the 19
sort() methods defined by java.util.Arrays. If you use the imported name sort
to invoke a method, the compiler will look at the types of the method arguments to
determine which method you mean.

It is even legal to import static methods with the same name from two or more dif-
ferent types as long as the methods all have different signatures. Here is one natural
example:

import static java.util.Arrays.sort;
import static java.util.Collections.sort;

You might expect that this code would cause a syntax error. In fact, it does not
because the sort() methods defined by the Collections class have different signa-
tures than all of the sort() methods defined by the Arrays class. When you use the
name “sort” in your code, the compiler looks at the types of the arguments to deter-
mine which of the 21 possible imported methods you mean.

Java File Structure

This chapter has taken us from the smallest to the largest elements of Java syntax,
from individual characters and tokens to operators, expressions, statements, and
methods, and on up to classes and packages. From a practical standpoint, the unit
of Java program structure you will be dealing with most often is the Java file. A Java
file is the smallest unit of Java code that can be compiled by the Java compiler. A
Java file consists of:

 An optional package directive
e Zero or more import or import static directives

 One or more type definitions

These elements can be interspersed with comments, of course, but they must appear
in this order. This is all there is to a Java file. All Java statements (except the package
and import directives, which are not true statements) must appear within methods,
and all methods must appear within a type definition.

Java files have a couple of other important restrictions. First, each file can contain at
most one top-level class that is declared public. A public class is one that is
designed for use by other classes in other packages. A class can contain any number

JavaFile Structure | 93

www.it-ebooks.info

-
1]
<
[
(2]
<
3
-
o
X

http://www.it-ebooks.info/

of nested or inner classes that are public. We'll see more about the public modifier
and nested classes in Chapter 3.

The second restriction concerns the filename of a Java file. If a Java file contains a
public class, the name of the file must be the same as the name of the class, with the
extension .java appended. Therefore, if Point is defined as a public class, its source
code must appear in a file named Point.java. Regardless of whether your classes are
public or not, it is good programming practice to define only one per file and to
give the file the same name as the class.

When a Java file is compiled, each of the classes it defines is compiled into a separate
class file that contains Java byte codes to be interpreted by the Java Virtual Machine.
A class file has the same name as the class it defines, with the extension .class
appended. Thus, if the file Point.java defines a class named Point, a Java compiler
compiles it to a file named Point.class. On most systems, class files are stored in
directories that correspond to their package names. The class com.davidflana
gan.examples.Point is thus defined by the class file com/davidflanagan/examples/
Point.class.

The Java interpreter knows where the class files for the standard system classes are
located and can load them as needed. When the interpreter runs a program that
wants to use a class named com.davidflanagan.examples.Point, it knows that the
code for that class is located in a directory named com/davidflanagan/examples/
and, by default, it “looks” in the current directory for a subdirectory of that name.
In order to tell the interpreter to look in locations other than the current directory,
you must use the -classpath option when invoking the interpreter or set the CLASS
PATH environment variable. For details, see the documentation for the Java inter-
preter, java, in Chapter 8.

Defining and Running Java Programs

A Java program consists of a set of interacting class definitions. But not every Java
class or Java file defines a program. To create a program, you must define a class that
has a special method with the following signature:

public static void main(String[] args)

This main() method is the main entry point for your program. It is where the Java
interpreter starts running. This method is passed an array of strings and returns no
value. When main() returns, the Java interpreter exits (unless main() has created
separate threads, in which case the interpreter waits for all those threads to exit).

To run a Java program, you run the Java interpreter, java, specifying the fully quali-
fied name of the class that contains the main() method. Note that you specify the
name of the class, not the name of the class file that contains the class. Any addi-
tional arguments you specify on the command line are passed to the main() method
as its String[] parameter. You may also need to specify the -classpath option (or

94 | Chapter 2:Java Syntax from the Ground Up

www.it-ebooks.info

http://www.it-ebooks.info/

-cp) to tell the interpreter where to look for the classes needed by the program.
Consider the following command:

java -classpath /opt/Jude com.davidflanagan.jude.Jude datafile.jude

java is the command to run the Java interpreter. -classpath /usr/local/Jude
tells the interpreter where to look for .class files. com.davidflanagan.jude.Jude is
the name of the program to run (i.e., the name of the class that defines the main()
method). Finally, datafile.jude is a string that is passed to that main() method as the
single element of an array of String objects.

There is an easier way to run programs. If a program and all its auxiliary classes
(except those that are part of the Java platform) have been properly bundled in a
Java archive (JAR) file, you can run the program simply by specifying the name of
the JAR file. In the next example, we show how to start up the Censum garbage col-
lection log analyzer:

java -jar /usr/local/Censum/censum.jar

Some operating systems make JAR files automatically executable. On those systems,
you can simply say:

% Jusr/local/Censum/censum. jar

See Chapter 13 for more details on how to execute Java programs.

Summary

In this chapter, we've introduced the basic syntax of the Java language. Due to the
interlocking nature of the syntax of programming languages, it is perfectly fine if
you don't feel at this point that you have completely grasped all of the syntax of the
language. It is by practice that we acquire proficiency in any language, human or
computer.

It is also worth observing that some parts of syntax are far more regularly used than
others. For example, the strictfp and assert keywords are almost never used.
Rather than trying to grasp every aspect of Java’s syntax, it is far better to begin to
acquire facility in the core aspects of Java and then return to any details of syntax
that may still be troubling you. With this in mind, let'’s move to the next chapter and
begin to discuss the classes and objects that are so central to Java and the basics of
Java’s approach to object-oriented programming.

Summary | 95

www.it-ebooks.info

-
]
<
o
(2]
<
3
-
o
X

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Object-Oriented Programming
in Java

Now that we've covered fundamental Java syntax, we are ready to begin object-
oriented programming in Java. All Java programs use objects, and the type of an
object is defined by its class or interface. Every Java program is defined as a class,
and nontrivial programs include a number of classes and interface definitions. This
chapter explains how to define new classes and how to do object-oriented program-
ming with them. We also introduce the concept of an interface, but a full discussion
of interfaces and Java’s type system is deferred until Chapter 4.

If you have experience with OO programming, however, be
careful. The term “object-oriented” has different meanings in
different languages. Don’t assume that Java works the same
way as your favorite OO language. (This is particularly true
for C++ or Python programmers).

This is a fairly lengthy chapter, so let’s begin with an overview and some definitions.

Overview of Classes

Classes are the most fundamental structural element of all Java programs. You can-
not write Java code without defining a class. All Java statements appear within
classes, and all methods are implemented within classes.

Basic 00 Definitions

Here are a couple important definitions:

97

www.it-ebooks.info

http://www.it-ebooks.info/

Class
A class is a collection of data fields that hold values and methods that operate
on those values. A class defines a new reference type, such as the Point type
defined in Chapter 2.

The Point class defines a type that is the set of all possible two-dimensional points.

Object

An object is an instance of a class.
A Point object is a value of that type: it represents a single two-dimensional point.

Objects are often created by instantiating a class with the new keyword and a con-
structor invocation, as shown here:

Point p = new Point(1.0, 2.0);

Constructors are covered later in this chapter in “Creating and Initializing Objects”
on page 106.

A class definition consists of a signature and a body. The class signature defines the
name of the class and may also specify other important information. The body of a
class is a set of members enclosed in curly braces. The members of a class usually
include fields and methods, and may also include constructors, initializers, and nes-

ted types.

Members can be static or nonstatic. A static member belongs to the class itself while
a nonstatic member is associated with the instances of a class (see “Fields and Meth-
ods” on page 100).

There are four very common kinds of members—class fields,
class methods, instance fields, and instance methods. The
majority of work done with Java involves interacting with
these kinds of members.

The signature of a class may declare that the class extends another class. The exten-
ded class is known as the superclass and the extension is known as the subclass. A
subclass inherits the members of its superclass and may declare new members or
override inherited methods with new implementations.

The members of a class may have access modifiers public, protected, or private.!
These modifiers specify their visibility and accessibility to clients and to subclasses.
This allows classes to control access to members that are not part of their public
API. This ability to hide members enables an object-oriented design technique
known as data encapsulation, which we discuss in “Data Hiding and Encapsulation”
on page 121.

1 There is also the default, aka package, visibility that we will meet later.

98 | Chapter 3:Object-Oriented Programming in Java

www.it-ebooks.info

http://www.it-ebooks.info/

Other Reference Types

The signature of a class may also declare that the class implements one or more
interfaces. An interface is a reference type similar to a class that defines method sig-
natures but does not usually include method bodies to implement the methods.

However, from Java 8 onward, interfaces may use the keyword default to indicate
that a method specified in the interface is optional. If a method is optional, the
interface file must include a default implementation (hence the choice of keyword)
which will be used by all implementing classes that do not provide an implementa-
tion of the optional method.

A class that implements an interface is required to provide bodies for the interface’s
nondefault methods. Instances of a class that implement an interface are also instan-
ces of the interface type.

Classes and interfaces are the most important of the five fundamental reference
types defined by Java. Arrays, enumerated types (or “enums”), and annotation types
(usually just called “annotations”) are the other three. Arrays are covered in
Chapter 2. Enums are a specialized kind of class and annotations are a specialized
kind of interface—both are discussed later in Chapter 4, along with a full discussion
of interfaces.

Class Definition Syntax

At its simplest level, a class definition consists of the keyword class followed by the
name of the class and a set of class members within curly braces. The class key-
word may be preceded by modifier keywords and annotations. If the class extends
another class, the class name is followed by the extends keyword and the name of
the class being extended. If the class implements one or more interfaces, then the
class name or the extends clause is followed by the implements keyword and a
comma-separated list of interface names. For example:

public class Integer extends Number implements Serializable, Comparable
// class members go here

}

A generic class may also have type parameters and wildcards as part of its definition
(see Chapter 4).

Class declarations may include modifier keywords. In addition to the access control
modifiers (public, protected, etc.), these include:

abstract
An abstract class is one whose implementation is incomplete and cannot be
instantiated. Any class with one or more abstract methods must be declared
abstract. Abstract classes are discussed in “Abstract Classes and Methods” on
page 128.

Overview of Classes | 99

www.it-ebooks.info

-~

v
=
(]
Q
=
o
3
3
3
Q

http://www.it-ebooks.info/

final
The final modifier specifies that the class may not be extended. A class cannot
be declared to be both abstract and final.

strictfp
If a class is declared strictfp, all its methods behave as if they were declared
strictfp. This modifier is extremely rarely used.

Fields and Methods

A class can be viewed as a collection of data (also referred to as state) and code to
operate on that state. The data is stored in fields, and the code is organized into
methods.

This section covers fields and methods, the two most important kinds of class mem-
bers. Fields and methods come in two distinct types: class members (also known as
static members) are associated with the class itself, while instance members are
associated with individual instances of the class (i.e., with objects). This gives us
four kinds of members:

o Class fields

o Class methods

o Instance fields

o Instance methods

The simple class definition for the class Circle, shown in Example 3-1, contains all
four types of members.

Example 3-1. A simple class and its members

public class Circle {
// A class field
public static final double PI= 3.14159; // A useful constant

// A class method: just compute a value based on the arguments
public static double radiansToDegrees(double radians) {
return radians * 180 / PI;

}

// An instance field
public double r; // The radius of the circle

// Two instance methods: they operate on the instance fields of an object
public double area() { // Compute the area of the circle
return PI * r * r;

}

100 | Chapter 3: Object-Oriented Programming in Java

www.it-ebooks.info

http://www.it-ebooks.info/

public double circumference() { // Compute the circumference
// of the circle
return 2 * PI * r;
}
}

It is not normally good practice to have a public field r—
instead, it would be much more usual to have a private field
r and a method radius() to provide access to it. The rea-
son for this will be explained later, in “Data Hiding and
Encapsulation” on page 121. For now, we use a public field
simply to give examples of how to work with instance

fields.

The following sections explain all four common kinds of members. First, we cover
the declaration syntax for fields. (The syntax for declaring methods is covered later
in this chapter in “Data Hiding and Encapsulation” on page 121.)

Field Declaration Syntax

Field declaration syntax is much like the syntax for declaring local variables (see
Chapter 2) except that field definitions may also include modifiers. The simplest
field declaration consists of the field type followed by the field name. The type may
be preceded by zero or more modifier keywords or annotations, and the name may
be followed by an equals sign and initializer expression that provides the initial
value of the field. If two or more fields share the same type and modifiers, the type
may be followed by a comma-separated list of field names and initializers. Here are
some valid field declarations:

int x = 1;

private String name;

public static final int DAYS_PER_WEEK = 7;
String[] daynames = new String[DAYS_PER_WEEK];
private int a = 17, b = 37, ¢ = 53;

Field modifiers are comprised of zero or more of the following keywords:

public, protected, private
These access modifiers specify whether and where a field can be used outside of
the class that defines it.

static
If present, this modifier specifies that the field is associated with the defining
class itself rather than with each instance of the class.

final
This modifier specifies that once the field has been initialized, its value may
never be changed. Fields that are both static and final are compile-time

Fields and Methods | 101

www.it-ebooks.info

v
=
(]
Q
-
o
3
2
3
Q

http://www.it-ebooks.info/

constants that javac may inline. final fields can also be used to create classes
whose instances are immutable.

transient
This modifier specifies that a field is not part of the persistent state of an object
and that it need not be serialized along with the rest of the object.

volatile
This modifier indicates that the field has extra semantics for concurrent use by
two or more threads. The volatile modifier says that the value of a field must
always be read from and flushed to main memory, and that it may not be
cached by a thread (in a register or CPU cache). See Chapter 6 for more details.

Class Fields

A class field is associated with the class in which it is defined rather than with an
instance of the class. The following line declares a class field:

public static final double PI = 3.14159;
This line declares a field of type double named PI and assigns it a value of 3.14159.

The static modifier says that the field is a class field. Class fields are sometimes
called static fields because of this static modifier. The final modifier says that the
value of the field does not change. Because the field PI represents a constant, we
declare it final so that it cannot be changed. It is a convention in Java (and many
other languages) that constants are named with capital letters, which is why our
field is named PI, not pi. Defining constants like this is a common use for class
fields, meaning that the static and final modifiers are often used together. Not all
class fields are constants, however. In other words, a field can be declared static
without being declared final.

The use of public static fields that are not final is almost
never a good practice—as multiple threads could update the
field and cause behavior that is extremely hard to debug.

A public static field is essentially a global variable. The names of class fields are
qualified by the unique names of the classes that contain them, however. Thus, Java
does not suffer from the name collisions that can affect other languages when differ-
ent modules of code define global variables with the same name.

The key point to understand about a static field is that there is only a single copy of
it. This field is associated with the class itself, not with instances of the class. If you
look at the various methods of the Circle class, you'll see that they use this field.
From inside the Circle class, the field can be referred to simply as PI. Outside the
class, however, both class and field names are required to uniquely specify the field.
Methods that are not part of Circle access this field as Circle.PI.

102 | Chapter3: Object-Oriented Programming in Java

www.it-ebooks.info

http://www.it-ebooks.info/

(Class Methods

As with class fields, class methods are declared with the static modifier:

public static double radiansToDegrees(double rads) {
return rads * 180 / PI;

}

This line declares a class method named radiansToDegrees(). It has a single
parameter of type double and returns a double value.

Like class fields, class methods are associated with a class, rather than with an
object. When invoking a class method from code that exists outside the class, you
must specify both the name of the class and the method. For example:

// How many degrees is 2.0 radians?
double d = Circle.radiansToDegrees(2.0);

If you want to invoke a class method from inside the class in which it is defined, you
don’t have to specify the class name. You can also shorten the amount of typing
required via the use of a static import (as discussed in Chapter 2).

Note that the body of our Circle.radiansToDegrees() method uses the class field
PI. A class method can use any class fields and class methods of its own class (or of
any other class).

A class method cannot use any instance fields or instance methods because class
methods are not associated with an instance of the class. In other words, although
the radiansToDegrees() method is defined in the Circle class, it cannot use the
instance part of any Circle objects.

One way to think about this is that in any instance, we always
have a this reference to the current object. But class methods
are not associated with a specific instance, so have no this
reference, and no access to instance fields.

As we discussed earlier, a class field is essentially a global variable. In a similar way, a
class method is a global method, or global function. Although radiansToDegrees()
does not operate on Circle objects, it is defined within the Circle class because it is
a utility method that is sometimes useful when working with circles, and so it makes
sense to package it along with the other functionality of the Circle class.

Instance Fields
Any field declared without the static modifier is an instance field:

public double r; // The radius of the circle

Instance fields are associated with instances of the class, so every Circle object we
create has its own copy of the double field r. In our example, r represents the radius

Fields and Methods | 103

www.it-ebooks.info

v
=
(]
Q
=
o
3
3
=]
Q

(o] 0]

http://www.it-ebooks.info/

of a specific circle. Each Circle object can have a radius independent of all other
Circle objects.

Inside a class definition, instance fields are referred to by name alone. You can see
an example of this if you look at the method body of the circumference() instance
method. In code outside the class, the name of an instance method must be prefixed
with a reference to the object that contains it. For example, if the variable c holds a
reference to a Circle object, we use the expression c.r to refer to the radius of that
circle:

Circle c = new Circle(); // Create a Circle object; store a ref in c

c.r =2.0; // Assign a value to its instance field r
Circle d = new Circle(); // Create a different Circle object
d.r = c.r * 2; // Make this one twice as big

Instance fields are key to object-oriented programming. Instance fields hold the
state of an object; the values of those fields make one object distinct from another.

Instance Methods

An instance method operates on a specific instance of a class (an object), and any
method not declared with the static keyword is automatically an instance method.

Instance methods are the feature that makes object-oriented programming start to
get interesting. The Circle class defined in Example 3-1 contains two instance
methods, area() and circumference(), that compute and return the area and cir-
cumference of the circle represented by a given Circle object.

To use an instance method from outside the class in which it is defined, we must
prefix it with a reference to the instance that is to be operated on. For example:

// Create a Circle object; store in variable c

Circle c = new Circle();

c.r = 2.0; // Set an instance field of the object
double a = c.area(); // Invoke an instance method of the object

This is why it is called object-oriented programming; the
object is the focus here, not the function call.

From within an instance method, we naturally have access to all the instance fields
that belong to the object the method was called on. Recall that an object is often best
considered to be a bundle containing state (represented as the fields of the object),
and behavior (the methods to act on that state).

All instance methods are implemented using an implicit parameter not shown in
the method signature. The implicit argument is named thtis; it holds a reference to

104 | Chapter3: Object-Oriented Programming in Java

www.it-ebooks.info

http://www.it-ebooks.info/

the object through which the method is invoked. In our example, that object is a
Circle.

The bodies of the area() and circumference() methods both
use the class field PI. We saw earlier that class methods can
use only class fields and class methods, not instance fields or
methods. Instance methods are not restricted in this way: they
can use any member of a class, whether it is declared static
or not.

How the this Reference Works

The implicit this parameter is not shown in method signatures because it is usually
not needed; whenever a Java method accesses the instance fields in its class, it is
implicit that it is accessing fields in the object referred to by the this parameter. The
same is true when an instance method invokes another instance method in the same
class—it’s taken that this means “call the instance method on the current object”

However, you can use the this keyword explicitly when you want to make it clear
that a method is accessing its own fields and/or methods. For example, we can
rewrite the area() method to use this explicitly to refer to instance fields:

public double area() { return Circle.PI * this.r * this.r; }

This code also uses the class name explicitly to refer to class field PI. In a method
this simple, it is not normally necessary to be quite so explicit. In more complicated
cases, however, you may sometimes find that it increases the clarity of your code to
use an explicit this where it is not strictly required.

In some cases, the this keyword is required, however. For example, when a method
parameter or local variable in a method has the same name as one of the fields of
the class, you must use this to refer to the field, because the field name used alone
refers to the method parameter or local variable.

For example, we can add the following method to the Circle class:

public void setRadius(double r) {
this.r = r; // Assign the argument (r) to the field (this.r)
// Note that we cannot just say r = r

}

Some developers will deliberately choose the names of their method arguments in
such a way that they don't clash with field names, so the use of this can largely be
avoided.

Finally, note that while instance methods can use the this keyword, class methods
cannot. This is because class methods are not associated with individual objects.

Fields and Methods | 105

www.it-ebooks.info

)
=
(]
Q
-
o
3
2
3
Q

http://www.it-ebooks.info/

Creating and Initializing Objects

Now that we've covered fields and methods, let’s move on to other important mem-
bers of a class. In particular, we'll look at constructors—these are class members
whose job is to initialize the fields of a class as new instances of the class are created.

Take another look at how we've been creating Circle objects:
Circle c = new Circle();

This can easily be read as the creation of a new instance of Circle, by calling some-
thing that looks a bit like a method. In fact, Circle() is an example of a constructor.
This is a member of a class that has the same name as the class, and has a body, like
a method.

Here’s how a constructor works. The new operator indicates that we need to create a
new instance of the class. First of all, memory is allocated to hold the new object
instance. Then, the constructor body is called, with any arguments that have been
specified. The constructor uses these arguments to do whatever initialization of the
new object is necessary.

Every class in Java has at least one constructor, and their purpose is to perform any
necessary initialization for a new object. Because we didn’t explicitly define a con-
structor for our Circle class in Example 3-1, the javac compiler automatically gave
us a constructor (called the default constructor) that takes no arguments and per-
forms no special initialization.

Defining a Constructor

There is some obvious initialization we could do for our circle objects, so let’s define
a constructor. Example 3-2 shows a new definition for Circle that contains a con-
structor that lets us specify the radius of a new Circle object. We've also taken the
opportunity to make the field r protected (to prevent access to it from arbitary
objects).

Example 3-2. A constructor for the Circle class

public class Circle {
public static final double PI = 3.14159; // A constant
// An instance field that holds the radius of the circle
protected double r;

// The constructor: initialize the radius field
public Circle(double r) { this.r = r; }

// The instance methods: compute values based on the radius
public double circumference() { return 2 * PI * r; }

public double area() { return PI * r*r; }

public double radius() { return r; }

106 | Chapter3: Object-Oriented Programming in Java

www.it-ebooks.info

http://www.it-ebooks.info/

When we relied on the default constructor supplied by the compiler, we had to write
code like this to initialize the radius explicitly:

Circle c = new Circle();
c.r = 0.25;

With the new constructor, the initialization becomes part of the object creation step:
Circle c = new Circle(0.25);

Here are some basic facts regarding naming, declaring, and writing constructors:

o The constructor name is always the same as the class name.
o A constructor is declared without a return type, not even void.

 The body of a constructor is initializing the object. You can think of this as set-
ting up the contents of the this reference

3
)
Q
g O
30
3
3
Q@

« A constructor may not return this or any other value.

Defining Multiple Constructors

Sometimes you want to initialize an object in a number of different ways, depending
on what is most convenient in a particular circumstance. For example, we might
want to initialize the radius of a circle to a specified value or a reasonable default
value. Here’s how we can define two constructors for Circle:

public Circle() { r = 1.0; }
public Circle(double r) { this.r = r; }

Because our Circle class has only a single instance field, we can’t initialize it too
many ways, of course. But in more complex classes, it is often convenient to define a
variety of constructors.

It is perfectly legal to define multiple constructors for a class, as long as each con-
structor has a different parameter list. The compiler determines which constructor
you wish to use based on the number and type of arguments you supply. This ability
to define multiple constructors is analogous to method overloading.

Invoking One Constructor from Another

A specialized use of the this keyword arises when a class has multiple constructors;
it can be used from a constructor to invoke one of the other constructors of the
same class. In other words, we can rewrite the two previous Circle constructors as
follows:

// This is the basic constructor: initialize the radius

public Circle(double r) { this.r = r; }

// This constructor uses this() to invoke the constructor above
public Circle() { this(1.0); }

(reating and Initializing Objects | 107

www.it-ebooks.info

http://www.it-ebooks.info/

This is a useful technique when a number of constructors share a significant
amount of initialization code, as it avoids repetition of that code. In more complex
cases, where the constructors do a lot more initialization, this can be a very useful
technique.

There is an important restriction on using this(): it can appear only as the first
statement in a constructor—but the call may be followed by any additional initiali-
zation a particular constructor needs to perform. The reason for this restriction
involves the automatic invocation of superclass constructors, which we’ll explore
later in this chapter.

Field Defaults and Initializers

The fields of a class do not necessarily require initialization. If their initial values are
not specified, the fields are automatically initialized to the default value false,
|u6eoe, 0, 0.0, or null, depending on their type (see Table 2-1 for more details).
These default values are specified by the Java language specification and apply to
both instance fields and class fields.

If the default field value is not appropriate for your field, you can instead explicitly
provide a different initial value. For example:

public static final double PI = 3.14159;
public double r = 1.0;

Field declarations are not part of any method. Instead, the Java
compiler generates initialization code for the field automati-
cally and puts it into all the constructors for the class. The ini-
tialization code is inserted into a constructor in the order in
which it appears in the source code, which means that a field
initializer can use the initial values of any fields declared
before it.

Consider the following code excerpt, which shows a constructor and two instance
fields of a hypothetical class:

public class SampleClass {
public int len = 10;
public int[] table = new int[len];

public SampleClass() {
for(int 1 = 0; 1 < len; i++) table[i] = i;

}

// The rest of the class is omitted...
}

In this case, the code generated by javac for the constructor is actually equivalent to
the following:

108 | Chapter3: Object-Oriented Programming in Java

www.it-ebooks.info

http://www.it-ebooks.info/

public SampleClass() {
len = 10;
table = new int[len];
for(int 1 = 0; 1 < len; 1++) table[i] = i;

}

If a constructor begins with a this() call to another constructor, the field
initialization code does not appear in the first constructor. Instead, the initialization
is handled in the constructor invoked by the this() call.

So, if instance fields are initialized in constructor, where are class fields initialized?
These fields are associated with the class, even if no instances of the class are ever
created. This means they need to be initialized even before a constructor is called.

To support this, javac generates a class initialization method automatically for
every class. Class fields are initialized in the body of this method, which is invoked
exactly once before the class is first used (often when the class is first loaded by the
Java VM.)

As with instance field initialization, class field initialization expressions are inserted
into the class initialization method in the order in which they appear in the source
code. This means that the initialization expression for a class field can use the class
fields declared before it. The class initialization method is an internal method that is
hidden from Java programmers. In the class file, it bears the name <clinit> (and
this method could be seen by, for example, examining the class file with javap—see
Chapter 13 for more details on how to use javap to do this).

Initializer blocks

So far, we've seen that objects can be initialized through the initialization expres-
sions for their fields and by arbitrary code in their constructors. A class has a class
initialization method, which is like a constructor, but we cannot explicitly define the
body of this method as we can for a constructor. Java does allow us to write arbi-
trary code for the initialization of class fields, however, with a construct known as a
static initializer. A static initializer is simply the keyword static followed by a block
of code in curly braces. A static initializer can appear in a class definition anywhere
a field or method definition can appear. For example, consider the following code
that performs some nontrivial initialization for two class fields:

// We can draw the outline of a circle using trigonometric functions
// Trigonometry is slow, though, so we precompute a bunch of values
public class TrigCircle {

// Here are our static lookup tables and their own initializers

private static final int NUMPTS = 500;

private static double sines[] = new double[NUMPTS];

private static double cosines[] = new double[NUMPTS];

// Here's a static initializer that fills in the arrays
static {
double x = 0.0;

(reating and Initializing Objects | 109

www.it-ebooks.info

v
=
(]
Q
-
o
3
2
=]
Q

http://www.it-ebooks.info/

double delta_x = (Circle.PI/2)/(NUMPTS-1);

for(int 1 = 0, x = 0.0; 1 < NUMPTS; i++, x += delta_x) {
sines[1] = Math.sin(x);
cosines[i] = Math.cos(x);

}

}
// The rest of the class is omitted...

}

A class can have any number of static initializers. The body of each initializer block
is incorporated into the class initialization method, along with any static field initi-
alization expressions. A static initializer is like a class method in that it cannot use
the this keyword or any instance fields or instance methods of the class.

Classes are also allowed to have instance initializers. An instance initializer is like a
static initializer, except that it initializes an object, not a class. A class can have any
number of instance initializers, and they can appear anywhere a field or method
definition can appear. The body of each instance initializer is inserted at the begin-
ning of every constructor for the class, along with any field initialization expres-
sions. An instance initializer looks just like a static initializer, except that it doesn’t
use the static keyword. In other words, an instance initializer is just a block of
arbitrary Java code that appears within curly braces.

Instance initializers can initialize arrays or other fields that require complex initiali-
zation. They are sometimes useful because they locate the initialization code right
next to the field, instead of separating into a constructor. For example:

private static final int NUMPTS = 100;
private int[] data = new int[NUMPTS];
{ for(int 1 = 0; i < NUMPTS; i++) data[i] = 1; }

In practice, however, this use of instance initializers is fairly rare.

Subclasses and Inheritance

The Circle defined earlier is a simple class that distinguishes circle objects only by
their radii. Suppose, instead, that we want to represent circles that have both a size
and a position. For example, a circle of radius 1.0 centered at point 0,0 in the Carte-
sian plane is different from the circle of radius 1.0 centered at point 1,2. To do this,
we need a new class, which we’ll call PlaneCircle.

Wed like to add the ability to represent the position of a circle without losing any of
the existing functionality of the Circle class. This is done by defining PlaneCircle
as a subclass of Circle so that PlaneCircle inherits the fields and methods of its
superclass, Circle. The ability to add functionality to a class by subclassing, or
extending, is central to the object-oriented programming paradigm.

110 | Chapter3: Object-Oriented Programming in Java

www.it-ebooks.info

http://www.it-ebooks.info/

Extending a Class

In Example 3-3, we show how we can implement PlaneCircle as a subclass of the
Circle class.

Example 3-3. Extending the Circle class

public class PlaneCircle extends Circle {
// We automatically inherit the fields and methods of Circle,
// so we only have to put the new stuff here.
// New instance fields that store the center point of the circle
private final double cx, cy;

// A new constructor to initialize the new fields

// It uses a special syntax to invoke the Circle() constructor

public PlaneCircle(double r, double x, double y) {
super(r); // Invoke the constructor of the superclass, Circle()
this.cx = x; // Initialize the instance field cx
this.cy = y; // Initialize the instance field cy

}

)
=
(]
Q
-
o
3
2
3
Q

public double getCentreX() {
return cx;

}

public double getCentreY() {
return cy;

}

// The area() and circumference() methods are inherited from Circle

// A new instance method that checks whether a point is inside the circle
// Note that it uses the inherited instance field r

public boolean isInside(double x, double y) {

double dx = x - cx, dy =y - cy; // Distance from center
double distance = Math.sqrt(dx*dx + dy*dy); // Pythagorean theorem
return (distance < r); // Returns true or false

}
3

Note the use of the keyword extends in the first line of Example 3-3. This keyword
tells Java that PlaneCircle extends, or subclasses, Circle, meaning that it inherits
the fields and methods of that class.

There are several different ways to express the idea that our
new object type has the characteristics of a Circle as well as
having a position. This is probably the simplest, but is not
always the most suitable, especially in larger systems.

Subclasses and Inheritance | 111

www.it-ebooks.info

http://www.it-ebooks.info/

The definition of the isInside() method shows field inheritance; this method uses
the field r (defined by the Circle class) as if it were defined right in PlaneCircle
itself. PlaneCircle also inherits the methods of Circle. Therefore, if we have a Pla
neCircle object referenced by variable pc, we can say:

double ratio = pc.circumference() / pc.area();

This works just as if the area() and circumference() methods were defined in
PlaneCircle itself.

Another feature of subclassing is that every PlaneCircle object is also a perfectly
legal Circle object. If pc refers to a PlaneCircle object, we can assign it to a Circle
variable and forget all about its extra positioning capabilities:

// Unit circle at the origin
PlaneCircle pc = new PlaneCircle(1.0, 0.0, 0.0);
Circle c = pc; // Assigned to a Circle variable without casting

This assignment of a PlaneCircle object to a Circle variable can be done without a
cast. As we discussed in Chapter 2 a conversion like this is always legal. The value
held in the Circle variable c is still a valid PlaneCircle object, but the compiler
cannot know this for sure, so it doesn’t allow us to do the opposite (narrowing) con-
version without a cast:

// Narrowing conversions require a cast (and a runtime check by the VM)
PlaneCircle pc2 = (PlaneCircle) c;
boolean origininside = ((PlaneCircle) c).isInside(0.0, 0.0);

This distinction is covered in more detail in “Lambda Expressions” on page 171,
where we talk about the distinction between the compile and runtime type of an
object.

Final classes

When a class is declared with the final modifier, it means that it cannot be exten-
ded or subclassed. java.lang.String is an example of a final class. Declaring a
class final prevents unwanted extensions to the class: if you invoke a method on a
String object, you know that the method is the one defined by the String class
itself, even if the String is passed to you from some unknown outside source.

Superclasses, Object, and the Class Hierarchy

In our example, PlaneCircle is a subclass of Circle. We can also say that Circle is
the superclass of PlaneCircle. The superclass of a class is specified in its extends
clause:

public class PlaneCircle extends Circle { ... }

Every class you define has a superclass. If you do not specify the superclass with an
extends clause, the superclass is the class java.lang.0bject. The Object class is
special for a couple of reasons:

112 | Chapter3: Object-Oriented Programming in Java

www.it-ebooks.info

http://www.it-ebooks.info/

o Itis the only class in Java that does not have a superclass.

o All Java classes inherit the methods of Object.

Because every class (except Object) has a superclass, classes in Java form a class
hierarchy, which can be represented as a tree with Object at its root.

Object has no superclass, but every other class has exactly one
superclass. A subclass cannot extend more than one super-
class. See Chapter 4 for more information on how to achieve a
similar result.

Figure 3-1 shows a partial class hierarchy diagram that includes our Circle and
PlaneCircle classes, as well as some of the standard classes from the Java API.

v
=
(]
Q
=
o
3
3
3
Q

Object Circle PlaneCircle I
- R
— Math
— System
—1 Reader InputStreamReader FileReader

FilterReader

StringReader

Figure 3-1. A class hierarchy diagram

Subclass Constructors
Look again at the PlaneCircle() constructor from Example 3-3:

public PlaneCircle(double r, double x, double y) {
super(r); // Invoke the constructor of the superclass, Circle()
this.cx = x; // Initialize the instance field cx
this.cy = y; // Initialize the instance field cy

}

Although this constructor explicitly initializes the cx and cy fields newly defined by
PlaneCircle, it relies on the superclass Circle() constructor to initialize the

Subdlasses and Inheritance | 113

www.it-ebooks.info

http://www.it-ebooks.info/

inherited fields of the class. To invoke the superclass constructor, our constructor
calls super ().

super is a reserved word in Java. One of its uses is to invoke the constructor of a
superclass from within a subclass constructor. This use is analogous to the use of
this() to invoke one constructor of a class from within another constructor of the
same class. Invoking a constructor using super() is subject to the same restrictions
as is using this() :

o super() can be used in this way only within a constructor.

o The call to the superclass constructor must appear as the first statement within
the constructor, even before local variable declarations.

The arguments passed to super () must match the parameters of the superclass con-
structor. If the superclass defines more than one constructor, super() can be used
to invoke any one of them, depending on the arguments passed.

Constructor Chaining and the Default Constructor

Java guarantees that the constructor of a class is called whenever an instance of that
class is created. It also guarantees that the constructor is called whenever an instance
of any subclass is created. In order to guarantee this second point, Java must ensure
that every constructor calls its superclass constructor.

Thus, if the first statement in a constructor does not explicitly invoke another con-
structor with this() or super(), the javac compiler inserts the call super() (i.e., it
calls the superclass constructor with no arguments). If the superclass does not have
a visible constructor that takes no arguments, this implicit invocation causes a com-
pilation error.

Consider what happens when we create a new instance of the PlaneCircle class.

First, the PlaneCircle constructor is invoked.

o This constructor explicitly calls super(r) to invoke a Circle constructor.

That Circle() constructor implicitly calls super () to invoke the constructor of
its superclass, Object (Object only has one constructor).

o At this point, we've reached the top of the hierarchy and constructors start to
run.

o The body of the Object constructor runs first.

o When it returns, the body of the Circle() constructor runs.

Finally, when the call to super(r) returns, the remaining statements of the Pla
neCircle() constructor are executed.

What all this means is that constructor calls are chained; any time an object is cre-
ated, a sequence of constructors is invoked, from subclass to superclass on up to

114 | Chapter 3: Object-Oriented Programming in Java

www.it-ebooks.info

http://www.it-ebooks.info/

Object at the root of the class hierarchy. Because a superclass constructor is always
invoked as the first statement of its subclass constructor, the body of the Object
constructor always runs first, followed by the constructor of its subclass and on
down the class hierarchy to the class that is being instantiated.

Whenever a constructor is invoked, it can count on the fields
of its superclass to be initialized by the time the constructor
starts to run.

The default constructor

There is one missing piece in the previous description of constructor chaining. If a
constructor does not invoke a superclass constructor, Java does so implicitly. But
what if a class is declared without a constructor? In this case, Java implicitly adds a
constructor to the class. This default constructor does nothing but invoke the super-
class constructor.

For example, if we dont declare a constructor for the PlaneCircle class, Java
implicitly inserts this constructor:

public PlaneCircle() { super(); }

If the superclass, Circle, doesn’t declare a no-argument constructor, the super()
call in this automatically inserted default constructor for PlaneCircle() causes a
compilation error. In general, if a class does not define a no-argument constructor,
all its subclasses must define constructors that explicitly invoke the superclass con-
structor with the necessary arguments.

If a class does not declare any constructors, it is given a no-argument constructor by
default. Classes declared public are given public constructors. All other classes are
given a default constructor that is declared without any visibility modifier: such a
constructor has default visibility. (The notion of visibility is explained later in this
chapter.)

If you are creating a public class that should not be publicly instantiated, you
should declare at least one non-public constructor to prevent the insertion of a
default public constructor. Classes that should never be instantiated (such as
java.lang.Math or java.lang.System) should define a private constructor. Such
a constructor can never be invoked from outside of the class, but it prevents the
automatic insertion of the default constructor.

Hiding Superclass Fields

For the sake of example, imagine that our PlaneCircle class needs to know the dis-
tance between the center of the circle and the origin (0,0). We can add another
instance field to hold this value:

public double r;

Subdlasses and Inheritance